167 Commits

Author SHA1 Message Date
Alexandre Ganea
8404aeb56a [Support] On Windows, ensure hardware_concurrency() extends to all CPU sockets and all NUMA groups
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.

== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.

By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.

This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.

== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".

== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).

When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.

When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.

Differential Revision: https://reviews.llvm.org/D71775
2020-02-14 10:24:22 -05:00
Benjamin Kramer
adcd026838 Make llvm::StringRef to std::string conversions explicit.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.

This doesn't actually modify StringRef yet, I'll do that in a follow-up.
2020-01-28 23:25:25 +01:00
Mehdi Amini
308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
River Riddle
21610e6651 Refactor the way that pass options are specified.
This change refactors pass options to be more similar to how statistics are modeled. More specifically, the options are specified directly on the pass instead of in a separate options class. (Note that the behavior and specification for pass pipelines remains the same.) This brings about several benefits:
* The specification of options is much simpler
* The round-trip format of a pass can be generated automatically
* This gives a somewhat deeper integration with "configuring" a pass, which we could potentially expose to users in the future.

PiperOrigin-RevId: 286953824
2019-12-23 16:48:22 -08:00
Mehdi Amini
56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
River Riddle
4562e389a4 NFC: Remove unnecessary 'llvm::' prefix from uses of llvm symbols declared in mlir namespace.
Aside from being cleaner, this also makes the codebase more consistent.

PiperOrigin-RevId: 286206974
2019-12-18 09:29:20 -08:00
Kazuaki Ishizaki
ae05cf27c6 Minor spelling tweaks
Closes tensorflow/mlir#304

PiperOrigin-RevId: 284568358
2019-12-09 09:23:48 -08:00
River Riddle
33a64540ad Add support for instance specific pass statistics.
Statistics are a way to keep track of what the compiler is doing and how effective various optimizations are. It is useful to see what optimizations are contributing to making a particular program run faster. Pass-instance specific statistics take this even further as you can see the effect of placing a particular pass at specific places within the pass pipeline, e.g. they could help answer questions like "what happens if I run CSE again here".

Statistics can be added to a pass by simply adding members of type 'Pass::Statistics'. This class takes as a constructor arguments: the parent pass pointer, a name, and a description. Statistics can be dumped by the pass manager in a similar manner to how pass timing information is dumped, i.e. via PassManager::enableStatistics programmatically; or -pass-statistics and -pass-statistics-display via the command line pass manager options.

Below is an example:

struct MyPass : public OperationPass<MyPass> {
  Statistic testStat{this, "testStat", "A test statistic"};

  void runOnOperation() {
    ...
    ++testStat;
    ...
  }
};

$ mlir-opt -pass-pipeline='func(my-pass,my-pass)' foo.mlir -pass-statistics

Pipeline Display:
===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
'func' Pipeline
  MyPass
    (S) 15 testStat - A test statistic
  MyPass
    (S)  6 testStat - A test statistic

List Display:
===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
MyPass
  (S) 21 testStat - A test statistic

PiperOrigin-RevId: 284022014
2019-12-05 11:53:28 -08:00
Sean Silva
82f9f9d112 Make diagnostic a bit clearer.
This prints out in case of any pass failure. Not just a crash.

PiperOrigin-RevId: 283616719
2019-12-03 14:01:25 -08:00
Kazuaki Ishizaki
8bfedb3ca5 Fix minor spelling tweaks (NFC)
Closes tensorflow/mlir#177

PiperOrigin-RevId: 275692653
2019-10-20 00:11:34 -07:00
River Riddle
7a7dcc171d Add support for generating reproducers on pass crash and failure.
This cl adds support for generating a .mlir file containing a reproducer for crashes and failures that happen during pass execution. The reproducer contains a comment detailing the configuration of the pass manager(e.g. the textual description of the pass pipeline that the pass manager was executing), along with the original input module.

Example Output:

// configuration: -pass-pipeline='func(cse, canonicalize), inline'
// note: verifyPasses=false

module {
  ...
}

PiperOrigin-RevId: 274088134
2019-10-10 19:36:54 -07:00
MLIR Team
ae6946ec11 Add ::printAsTextualPipeline to Pass and OpPassManager.
Allow printing out pipelines in a format that is as close as possible to the
textual pass pipeline format. Individual passes can override the print function
in order to format any options that may have been used to construct that pass.

PiperOrigin-RevId: 273813627
2019-10-09 13:49:17 -07:00
River Riddle
1c649d5785 Pass the pointer of the parent pipeline collection pass to PassInstrumentation::run*Pipeline.
For the cases where there are multiple levels of nested pass managers, the parent thread ID is not enough to distinguish the parent of a given pass pipeline. Passing in the parent pass gives an exact anchor point.

PiperOrigin-RevId: 272105461
2019-09-30 17:44:55 -07:00
Christian Sigg
c900d4994e Fix a number of Clang-Tidy warnings.
PiperOrigin-RevId: 270632324
2019-09-23 02:34:27 -07:00
River Riddle
bbe65b46f5 NFC: Pass PassInstrumentations by unique_ptr instead of raw pointer.
This makes the ownership model explicit, and removes potential user errors.

PiperOrigin-RevId: 269122834
2019-09-14 17:44:50 -07:00
River Riddle
cb1bcba69b NFC: Merge OpPass with OperationPass into just OperationPass.
OperationPass' are defined exactly the same way as they are now:
   class DerivedPass :  public OperationPass<DerivedPass>;

OpPass' are now defined as OperationPass, but with an additional template parameter for the operation type:
   class DerivedPass :  public OperationPass<DerivedPass, FuncOp>;

PiperOrigin-RevId: 269122410
2019-09-14 17:37:43 -07:00
River Riddle
8a1cdeb31b Forward diagnostics from untracked threads in ParallelDiagnosticHandler.
This allows for the use of multiple ParallelDiagnosticHandlers without having them conflict with each other.

PiperOrigin-RevId: 268967407
2019-09-13 13:19:19 -07:00
River Riddle
9274ed66ef Refactor pass pipeline command line parsing to support explicit pipeline strings.
This allows for explicitly specifying the pipeline to add to the pass manager. This includes the nesting structure, as well as the passes/pipelines to run. A textual pipeline string is defined as a series of names, each of which may in itself recursively contain a nested pipeline description. A name is either the name of a registered pass, or pass pipeline, (e.g. "cse") or the name of an operation type (e.g. "func").

For example, the following pipeline:
$ mlir-opt foo.mlir -cse -canonicalize -lower-to-llvm

Could now be specified as:
$ mlir-opt foo.mlir -pass-pipeline='func(cse, canonicalize), lower-to-llvm'

This will allow for running pipelines on nested operations, like say spirv modules. This does not remove any of the current functionality, and in fact can be used in unison. The new option is available via 'pass-pipeline'.

PiperOrigin-RevId: 268954279
2019-09-13 12:10:31 -07:00
River Riddle
893c86fff7 Explicitly declare the OpPassManager move constructor to avoid undefined errors.
Some compilers will try to auto-generate the destructor, instead of using the user provided destructor, when creating a default move constructor.

PiperOrigin-RevId: 268067367
2019-09-09 13:44:24 -07:00
River Riddle
e702875d16 Add support for coalescing adjacent nested pass pipelines.
This allows for parallelizing across pipelines of multiple operation types. AdaptorPasses can now hold pass managers for multiple operation types and will dispatch based upon the operation being operated on.

PiperOrigin-RevId: 268017344
2019-09-09 09:52:25 -07:00
River Riddle
120509a6b2 Refactor PassTiming to support nested pipelines.
This is done via a new set of instrumentation hooks runBeforePipeline/runAfterPipeline, that signal the lifetime of a pass pipeline on a specific operation type. These hooks also provide the parent thread of the pipeline, allowing for accurate merging of timers running on different threads.

PiperOrigin-RevId: 267909193
2019-09-08 19:58:13 -07:00
River Riddle
5c036e682d Refactor the pass manager to support operations other than FuncOp/ModuleOp.
This change generalizes the structure of the pass manager to allow arbitrary nesting pass managers for other operations, at any level. The only user visible change to existing code is the fact that a PassManager must now provide an MLIRContext on construction. A new class `OpPassManager` has been added that represents a pass manager on a specific operation type. `PassManager` will remain the top-level entry point into the pipeline, with OpPassManagers being nested underneath. OpPassManagers will still be implicitly nested if the operation type on the pass differs from the pass manager. To explicitly build a pipeline, the 'nest' methods on OpPassManager may be used:

// Pass manager for the top-level module.
PassManager pm(ctx);

// Nest a pipeline operating on FuncOp.
OpPassManager &fpm = pm.nest<FuncOp>();
fpm.addPass(...);

// Nest a pipeline under the FuncOp pipeline that operates on spirv::ModuleOp
OpPassManager &spvModulePM = pm.nest<spirv::ModuleOp>();

// Nest a pipeline on FuncOps inside of the spirv::ModuleOp.
OpPassManager &spvFuncPM = spvModulePM.nest<FuncOp>();

To help accomplish this a new general OperationPass is added that operates on opaque Operations. This pass can be inserted in a pass manager of any type to operate on any operation opaquely. An example of this opaque OperationPass is a VerifierPass, that simply runs the verifier opaquely on the current operation.

/// Pass to verify an operation and signal failure if necessary.
class VerifierPass : public OperationPass<VerifierPass> {
  void runOnOperation() override {
    Operation *op = getOperation();
    if (failed(verify(op)))
      signalPassFailure();
    markAllAnalysesPreserved();
  }
};

PiperOrigin-RevId: 266840344
2019-09-02 19:25:26 -07:00
River Riddle
1dd9bf4739 Generalize the pass hierarchy by adding a general OpPass<PassT, OpT>.
This pass class generalizes the current functionality between FunctionPass and ModulePass, and allows for operating on any operation type. The pass manager currently only supports OpPasses operating on FuncOp and ModuleOp, but this restriction will be relaxed in follow-up changes. A utility class OpPassBase<OpT> allows for generically referring to operation specific passes: e.g. FunctionPassBase == OpPassBase<FuncOp>.

PiperOrigin-RevId: 266442239
2019-08-30 13:16:37 -07:00
River Riddle
29099e03ce Generalize the analysis manager framework to work on any operation at any nesting.
The pass manager is moving towards being able to run on operations at arbitrary nesting. An operation may have both parent and child operations, and the AnalysisManager must be able to handle this generalization. The AnalysisManager class now contains generic 'getCachedParentAnalysis' and 'getChildAnalysis/getCachedChildAnalysis' functions to query analyses on parent/child operations. This removes the hard coded nesting relationship between Module/Function.

PiperOrigin-RevId: 266003636
2019-08-28 15:11:17 -07:00
Jacques Pienaar
79f53b0cf1 Change from llvm::make_unique to std::make_unique
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.

PiperOrigin-RevId: 263953918
2019-08-17 11:06:03 -07:00
River Riddle
4fb971a9c4 NFC: Refactor the PassInstrumentation framework to operate on Operation instead of llvm::Any.
Now that functions and modules are operations, Operation makes more sense as the opaque object to refer to both.

PiperOrigin-RevId: 263883913
2019-08-16 17:59:37 -07:00
Mehdi Amini
926fb685de Express ownership transfer in PassManager API through std::unique_ptr (NFC)
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:

  Pass *pass = ....
  pm.addPass(pass);
  pm.addPass(pass);
  pm.run(module);

PiperOrigin-RevId: 263053082
2019-08-12 19:13:12 -07:00
River Riddle
0e3260bc73 Change the IR printing pass instrumentation to ignore the verifier passes on non-failure.
The verifier passes are NO-OP and are only useful to print after in the case of failure. This removes a lot of unnecessary clutter when printing after/before all passes.

PiperOrigin-RevId: 257836310
2019-07-12 17:42:46 -07:00
River Riddle
b3e28fca53 NFC: Remove Function::getModule.
There is already a more general 'getParentOfType' method, and 'getModule' is likely to be misused as functions get placed within different regions than ModuleOp.

PiperOrigin-RevId: 257442243
2019-07-12 08:42:21 -07:00
River Riddle
fec20e590f NFC: Rename Module to ModuleOp.
Module is a legacy name that only exists as a typedef of ModuleOp.

PiperOrigin-RevId: 257427248
2019-07-10 10:11:21 -07:00
River Riddle
8c44367891 NFC: Rename Function to FuncOp.
PiperOrigin-RevId: 257293379
2019-07-10 10:10:53 -07:00
River Riddle
626b8b6a5d NFC: Remove Module::getFunctions in favor of a general getOps<T>.
Modules can now contain more than just Functions, this just updates the iteration API to reflect that. The 'begin'/'end' methods have also been updated to iterate over opaque Operations.

PiperOrigin-RevId: 257099084
2019-07-08 18:28:17 -07:00
River Riddle
5e4f8b7e7b NFC: Make the 'disable-pass-threading' flag a PassManagerOption.
This also adds the ability to programmatically disable threading.

PiperOrigin-RevId: 257051809
2019-07-08 14:16:08 -07:00
River Riddle
d3f743252d NFC: Move the Function/Module/Operation::verify methods out-of-line.
As Functions/Modules becomes operations, these methods will conflict with the 'verify' hook already on derived operation types.

PiperOrigin-RevId: 256246112
2019-07-02 16:43:36 -07:00
River Riddle
206e55cc16 NFC: Refactor Module to be value typed.
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.

PiperOrigin-RevId: 256196193
2019-07-02 16:43:36 -07:00
River Riddle
54cd6a7e97 NFC: Refactor Function to be value typed.
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).

PiperOrigin-RevId: 255983022
2019-07-01 11:39:00 -07:00
River Riddle
3902cef954 Make the ParallelDiagnosticHandler used by the pass manager publicly available in Diagnostics.h. This provides a common utility for deterministically handling diagnostics in a multi-threaded environment.
--

PiperOrigin-RevId: 249325937
2019-06-01 19:55:24 -07:00
River Riddle
b3888fa9cc Store the child function analysis maps of a ModuleAnalysisManager by unique_ptr instead of by-value.
--

PiperOrigin-RevId: 248456926
2019-05-20 13:43:49 -07:00
River Riddle
85bf79851e Change the diagnostic handler to accept Diagnostic instead of location/message/kind. This opens the door for many more powerful use cases: fixits, colors, etc.
--

PiperOrigin-RevId: 247705673
2019-05-10 19:30:56 -07:00
River Riddle
ff6e7cf558 Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic.
The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements:
    * A severity level.
    * A source Location.
    * A list of DiagnosticArguments that help compose and comprise the output message.
      * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc.
      * Arguments can be added to the diagnostic via the stream(<<) operator.
    * (In a future cl) A list of attached notes.
      * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own.

    The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction.

    These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics.

    Simple Example:

    emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits");
    emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits";

--

PiperOrigin-RevId: 246526439
2019-05-06 08:26:34 -07:00
River Riddle
b14c4b4ca8 Add support for basic remark diagnostics. This is the minimal functionality needed to separate notes from remarks. It also provides a starting point to start building out better remark infrastructure.
--

PiperOrigin-RevId: 246175216
2019-05-06 08:24:02 -07:00
River Riddle
eaf7f6b671 Start sketching out a new diagnostics infrastructure. Create a new class 'DiagnosticEngine' and move the diagnostic handler support and final diagnostic emission from the MLIRContext to it.
--

PiperOrigin-RevId: 246163897
2019-05-06 08:23:53 -07:00
River Riddle
40ab8e0fb3 Enable multi-threading in the pass manager by default.
--

PiperOrigin-RevId: 245458081
2019-05-06 08:17:58 -07:00
River Riddle
0be6369176 Update the Function and Module verifiers to return LogicalResult instead of bool.
--

PiperOrigin-RevId: 241553930
2019-04-02 13:40:20 -07:00
River Riddle
8a0622c986 [PassManager] Add a utility class, PrettyStackTraceParallelDiagnosticEntry, to emit any queued up diagnostics in the event of a crash when multi-threading.
PiperOrigin-RevId: 240986566
2019-03-29 17:54:51 -07:00
River Riddle
07c1a96abf [PassManager] Define a ParallelDiagnosticHandler to ensure that diagnostics are still produced in a deterministic order when multi-threading.
PiperOrigin-RevId: 240817922
2019-03-29 17:50:59 -07:00
Jacques Pienaar
b15ac2d999 Initialize std::atomic directly.
Avoids error in OSS build:
error: copying variable of type 'std::atomic<unsigned int>' invokes deleted constructor
PiperOrigin-RevId: 240618765
2019-03-29 17:46:26 -07:00
River Riddle
af45236c70 Add experimental support for multi-threading the pass manager. This adds support for running function pipelines on functions across multiple threads, and is guarded by an off-by-default flag 'experimental-mt-pm'. There are still quite a few things that need to be done before multi-threading is ready for general use(e.g. pass-timing), but this allows for those things to be tested in a multi-threaded environment.
PiperOrigin-RevId: 240489002
2019-03-29 17:44:08 -07:00
Chris Lattner
46ade282c8 Make FunctionPass::getFunction() return a reference to the function, instead of
a pointer.  This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule().  NFC.

PiperOrigin-RevId: 240257910
2019-03-29 17:40:44 -07:00
Jacques Pienaar
a8ed2ca8fd Cleanup for changes failing with std=c++11
The static constexpr were failing with undefined reference due to lacking definition at namespace scope.

PiperOrigin-RevId: 239241157
2019-03-29 17:25:24 -07:00