GNU assembler 2.26 introduced the .cfi_label directive. It does not
expand to any CFI instructions, but defines a label in
.eh_frame/.debug_frame, which can be used by runtime patching code to
locate the FDE. .cfi_label is not allowed for CIE's initial
instructions, and can therefore be used to force the next instruction to
be placed in a FDE instead of a CIE.
In glibc since 2018, sysdeps/riscv/start.S utilizes .cfi_label to force
DW_CFA_undefined to be placed in a FDE. arc/csky/loongarch ports have
copied this use.
```
.cfi_startproc
// DW_CFA_undefined is allowed for CIE's initial instructions.
// Without .cfi_label, gas would place DW_CFA_undefined in a CIE.
.cfi_label .Ldummy
.cfi_undefined ra
.cfi_endproc
```
No CFI instruction is associated with .cfi_label, so the `case
MCCFIInstruction::OpLabel:` code in BOLT is unreachable and onlt to make
-Wswitch happy.
Close#97222
Pull Request: https://github.com/llvm/llvm-project/pull/97922
`NVPTXTargetStreamer::changeSection` needs `CurSection` to properly
print "\t}\n" for DWARF sections.
db48f1a1764023f8efeb055e343b967d1eb37d19 added
`MCStreamer::changeSection` before `TS->changeSection`,
making `CurSection == Section` when `getCurrentSectionOnly` switches to
`CurFrag` (626eef5ecf92e98cbfccfa6134e0a760e7592813).
cf311a1131b9aef3e66b2a20ad49cfc77212754b did fix the bug, but the
mechanism is confusing. Fix it using nullable getCurrentSectionOnly().
Follow-up to 05ba5c0648ae5e80d5afce270495bf3b1eef9af4. uint32_t is
preferred over const MCExpr * in the section stack uses because it
should only be evaluated once. Change the paramter type to match.
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
70 under llvm/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".
C_FILE symbols. To match the behavior of the assembler and the legacy
compiler, this includes using the generic ".file" name for the C_FILE
symbol and generating the actual file name in an auxiliary entry.
For instructions that don't map to a mnemonic string, the implementation
of MCInstPrinter::getMnemonic would return an invalid pointer due to the
result of the calculation of the instruction's position in the `AsmStrs`
table. This patch fixes the issue by ensuring those cases return a
`nullptr` value instead.
Fixes#74177.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This change adds the PLATFORM XMACRO to simplify the addition of new MachO
platforms and reduce the number of required changes. Many of the changes needed
for adding a new platform are mechanical, such as adding new cases to a switch
statement. This will help streamline the process by consolidating much of the
necessary information into the MachO.def file.
This patch extends support of the option `-frecord-command-line` to XCOFF. XCOFF doesn’t have custom sections like ELF, so the command line data is emitted to a .info section instead. A C_INFO symbol is generated with the .info section to preserve the command line data past the link step. Multiple command lines are separated by newlines and null bytes. The command line data can be retrieved on AIX with command `what file_name`.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D153600
to help debug and report better diagnostics for functions like
relaxDwarfCallFrameFragment (D153167).
In MCStreamer, some emitCFI* functions already take a SMLoc argument. Add a
SMLoc argument to the remaining functions that generate a MCCFIInstruction.
This is mostly useful for ARM64EC, which uses such symbols extensively.
One interesting quirk of ARM64EC is that we need to be able to emit weak
symbols that point at each other (so if either symbol is defined
elsewhere, both symbols point at the definition). This handling is
currently restricted to weak_anti_dep symbols, because we depend on the
current behavior of resolving weak symbols in some cases.
Differential Revision: https://reviews.llvm.org/D145208
Encoding FS discriminators for block probes. Decoding them correspondingly.
The encoding/decoding of FS discriminators are conditional, only for probes with a non-zero discriminator. This saves encoding size, also ensures downwards-compatiblity.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D147651
This reverts commit 10c17c97ebaf81ac26f6830e51a7a57ddcf63cd2. It causes undefined symbol error on chromium windows build. A small repro was uploaded to the code review.
This is mostly useful for ARM64EC, which uses such symbols extensively.
One interesting quirk of ARM64EC is that we need to be able to emit weak
symbols that point at each other (so if either symbol is defined
elsewhere, both symbols point at the definition). This required a few
changes to the way we handle weak symbols on Windows.
Differential Revision: https://reviews.llvm.org/D145208
This is mostly useful for ARM64EC, which uses such symbols extensively.
One interesting quirk of ARM64EC is that we need to be able to emit weak
symbols that point at each other (so if either symbol is defined
elsewhere, both symbols point at the definition). This required a few
changes to the way we handle weak symbols on Windows.
Differential Revision: https://reviews.llvm.org/D145208
All users of MCCodeEmitter::encodeInstruction use a raw_svector_ostream
to encode the instruction into a SmallVector. The raw_ostream however
incurs some overhead for the actual encoding.
This change allows an MCCodeEmitter to directly emit an instruction into
a SmallVector without using a raw_ostream and therefore allow for
performance improvments in encoding. A default path that uses existing
raw_ostream implementations is provided.
Reviewed By: MaskRay, Amir
Differential Revision: https://reviews.llvm.org/D145791
Summary: A R_REF relocation as a non-relocating reference is required to prevent garbage collection (by the binder) of the ref symbol in object generation.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D144356
value() has undesired exception checking semantics and calls
__throw_bad_optional_access in libc++. Moreover, the API is unavailable without
_LIBCPP_NO_EXCEPTIONS on older Mach-O platforms (see
_LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS).
This commit fixes LLVMAnalysis and its dependencies.
Next patch after D139548 and D139439. Same expectations, the change seems safe with as far as llvm goes, we cannot check downstream implementations.
Differential Revision: https://reviews.llvm.org/D139614
In the same vein as D139439, the patch is not NFC as there is no way to check all downstream implementations but the patch seems pretty safe.
Differential Revision: https://reviews.llvm.org/D139548
Before performing this change, I checked that `ByteAlignment` was never `0` inside `MCAsmStreamer:emitZeroFill` and `MCAsmStreamer::emitLocalCommonSymbol`.
I believe it is NFC as `0` values are illegal in `emitZeroFill` anyways, `Log2(ByteAlignment)` would be undefined.
And currently, all calls to `emitLocalCommonSymbol` are provably `>0`.
Differential Revision: https://reviews.llvm.org/D139439
This breaks Windows bots with
`warning C4334: '<<': result of 32-bit shift implicitly converted to 64 bits (was 64-bit shift intended?)`
Some shift operators are lacking a proper literal unit ('1ULL' instead of
'1'). Will reland once fixed.
This reverts commit c621c1a8e81856e6bf2be79714767d80466e9ede.
Before performing this change, I checked that `ByteAlignment` was never `0` inside `MCAsmStreamer:emitZeroFill` and `MCAsmStreamer::emitLocalCommonSymbol`.
I believe it is NFC as `0` values are illegal in `emitZeroFill` anyways, `Log2(ByteAlignment)` would be undefined.
And currently, all calls to `emitLocalCommonSymbol` are provably `>0`.
Differential Revision: https://reviews.llvm.org/D139439
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Extends the Asm reader/writer to support reading and writing the
'.memtag' directive (including allowing it on internal global
variables). Also add some extra tooling support, including objdump and
yaml2obj/obj2yaml.
Test that the sanitize_memtag IR attribute produces the expected asm
directive.
Uses the new Aarch64 MemtagABI specification
(https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst)
to identify symbols as tagged in object files. This is done using a
R_AARCH64_NONE relocation that identifies each tagged symbol, and these
relocations are tagged in a special SHT_AARCH64_MEMTAG_GLOBALS_STATIC
section. This signals to the linker that the global variable should be
tagged.
Reviewed By: fmayer, MaskRay, peter.smith
Differential Revision: https://reviews.llvm.org/D128958
This patch makes code less readable but it will clean itself after all functions are converted.
Differential Revision: https://reviews.llvm.org/D138665
Currently pseudo probe encoding for a function is like:
- For the first probe, a relocation from it to its physical position in the code body
- For subsequent probes, an incremental offset from the current probe to the previous probe
The relocation could potentially cause relocation overflow during link time. I'm now replacing it with an offset from the first probe to the function start address.
A source function could be lowered into multiple binary functions due to outlining (e.g, coro-split). Since those binary function have independent link-time layout, to really avoid relocations from .pseudo_probe sections to .text sections, the offset to replace with should really be the offset from the probe's enclosing binary function, rather than from the entry of the source function. This requires some changes to previous section-based emission scheme which now switches to be function-based. The assembly form of pseudo probe directive is also changed correspondingly, i.e, reflecting the binary function name.
Most of the source functions end up with only one binary function. For those don't, a sentinel probe is emitted for each of the binary functions with a different name from the source. The sentinel probe indicates the binary function name to differentiate subsequent probes from the ones from a different binary function. For examples, given source function
```
Foo() {
…
Probe 1
…
Probe 2
}
```
If it is transformed into two binary functions:
```
Foo:
…
Foo.outlined:
…
```
The encoding for the two binary functions will be separate:
```
GUID of Foo
Probe 1
GUID of Foo
Sentinel probe of Foo.outlined
Probe 2
```
Then probe1 will be decoded against binary `Foo`'s address, and Probe 2 will be decoded against `Foo.outlined`. The sentinel probe of `Foo.outlined` makes sure there's not accidental relocation from `Foo.outlined`'s probes to `Foo`'s entry address.
On the BOLT side, to be minimal intrusive, the pseudo probe re-encoding sticks with the old encoding format. This is fine since unlike linker, Bolt processes the pseudo probe section as a whole and it is free from relocation overflow issues.
The change is downwards compatible as long as there's no mixed use of the old encoding and the new encoding.
Reviewed By: wenlei, maksfb
Differential Revision: https://reviews.llvm.org/D135912
Differential Revision: https://reviews.llvm.org/D135914
Differential Revision: https://reviews.llvm.org/D136394
This feature implements support for making entries in the exception section
on XCOFF on the direct assembly path using the ".except" pseudo-op. It also
provides functionality to lower entries (comprised of language and reason
codes) into the exception section through the use of annotation metadata
attached to llvm.ppc.trap/trapd/tw/tdw intrinsics. Integrated assembler
support will be provided in another review. https://reviews.llvm.org/D133030
needs to merge first for LIT tests
Reviewed By: shchenz, RKSimon
Differential Revision: https://reviews.llvm.org/D132146
Previously, we were generating zeroes when generating code alignments for AArch64, but now we should omit the value and let the assembler choose to generate nops or zeroes.
Reviewed By: efriedma, MaskRay
Differential Revision: https://reviews.llvm.org/D132508
This includes .seh_* directives for generating it from assembly.
It is designed fairly similarly to the ARM64 handling.
For .seh_handler directives, such as
".seh_handler __C_specific_handler, @except" (which is supported
on x86_64 and aarch64 so far), the "@except" bit doesn't work in
ARM assembly, as '@' is used as a comment character (on all current
platforms).
Allow using '%' instead of '@' for this purpose. This convention
is used by GAS in similar contexts already,
e.g. [1]:
Note on targets where the @ character is the start of a comment
(eg ARM) then another character is used instead. For example the
ARM port uses the % character.
In practice, this unfortunately means that all such .seh_handler
directives will need ifdefs for ARM.
Contrary to ARM64, on ARM, it's quite common that we can't evaluate
e.g. the function length at this point, due to instructions whose
length is finalized later. (Also, inline jump tables end with
a ".p2align 1".)
If unable to to evaluate the function length immediately, emit
it as an MCExpr instead. If we'd implement splitting the unwind
info for a function (which isn't implemented for ARM64 yet either),
we wouldn't know whether we need to split it though.
Avoid calling getFrameIndexOffset() on an unset
FuncInfo.UnwindHelpFrameIdx, to avoid triggering asserts in the
preexisting testcase CodeGen/ARM/Windows/wineh-basic.ll. (Once
MSVC exception handling is fully implemented, those changes
can be reverted.)
[1] https://sourceware.org/binutils/docs/as/Section.html#Section
Differential Revision: https://reviews.llvm.org/D125645