We'd catch the tautological select pattern later anyways
due to constant folding, so that leaves PHI-like select,
but it does not appear to fire there.
Currently `createNodeForSelectOrPHI()` takes an Instruction,
and only works on the Cond that is an ICmpInst,
but that can be relaxed somewhat.
For now, simply rename the existing function,
and add a thin wrapper ontop that still does
the same thing as it used to.
https://alive2.llvm.org/ce/z/ULuZxB
We could transparently handle wider bitwidths,
by effectively casting iN to <N x i1> and performing the `add`
bit/element -wise, the expression will be rather large,
so let's not do that for now.
https://alive2.llvm.org/ce/z/aKAr94
We could transparently handle wider bitwidths,
by effectively casting iN to <N x i1> and performing the `umin`
bit/element -wise, the expression will be rather large,
so let's not do that for now.
https://alive2.llvm.org/ce/z/SMEaoc
We could transparently handle wider bitwidths,
by effectively casting iN to <N x i1> and performing the `umax`
bit/element -wise, the expression will be rather large,
so let's not do that for now.
This is the last major stepping stone before being able to allocate the node via the folding set allocator. That will in turn allow more general SCEV predicate expression trees.
For those curious, the whole reason for tracking the predicate set seperately as opposed to just immediately registering the dependencies appears to be allowing the printing code to print a result without changing the PSE state. It's slightly questionable if this justifies the complexity, but since we can preserve it with local ugliness, I did so.
PredicatedScalarEvolution has a predicate type for representing A == B. This change generalizes it into something which can represent a A <pred> B.
This generality is currently unused, but is motivated by a couple of recent cases which have come up. In particular, I'm currently playing around with using this to simplify the runtime checking code in LoopVectorizer. Regardless of the outcome of that prototyping, generalizing the compare node seemed useful.
Extend scalar evolution to handle >= and <= if a loop is known to be finite and the induction variable guards the condition. Specifically, with these assumptions lhs <= rhs is equivalent to lhs < rhs + 1 and lhs >= rhs to lhs > rhs -1.
In the case of lhs <= rhs, this is true since the only case these are not equivalent
is when rhs == unsigned/signed intmax, which would have resulted in an infinite loop.
In the case of lhs >= rhs, this is true since the only case these are not equivalent
is when rhs == unsigned/signed intmin, which would again have resulted in an infinite loop.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D118090
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This patch adds support for implication inference logic for the
following pattern:
```
lhs < (y >> z) <= y, y <= rhs --> lhs < rhs
```
We should be able to use the fact that value shifted to right is
not greater than the original value (provided it is non-negative).
Differential Revision: https://reviews.llvm.org/D116150
Reviewed-By: apilipenko
Since we don't merge/expand non-sequential umin exprs into umin_seq exprs,
we may have umin_seq(umin(umin_seq())) chain, and the innermost umin_seq
can have duplicate operands still.
We could just merge all umin into umin_seq, but that is likely
a pessimization, so don't do that, but pretend that we did
for the purpose of deduplication.
Having the same operand more than once doesn't change the outcome here,
neither reduction-wise nor poison-wise.
We must keep the first instance specifically though.
Two crashes have been reported. This change disables the new logic while leaving the new node in tree. Hopefully, that's enough to allow investigation without breakage while avoiding massive churn.
As discussed in https://github.com/llvm/llvm-project/issues/53020 / https://reviews.llvm.org/D116692,
SCEV is forbidden from reasoning about 'backedge taken count'
if the branch condition is a poison-safe logical operation,
which is conservatively correct, but is severely limiting.
Instead, we should have a way to express those
poison blocking properties in SCEV expressions.
The proposed semantics is:
```
Sequential/in-order min/max SCEV expressions are non-commutative variants
of commutative min/max SCEV expressions. If none of their operands
are poison, then they are functionally equivalent, otherwise,
if the operand that represents the saturation point* of given expression,
comes before the first poison operand, then the whole expression is not poison,
but is said saturation point.
```
* saturation point - the maximal/minimal possible integer value for the given type
The lowering is straight-forward:
```
compare each operand to the saturation point,
perform sequential in-order logical-or (poison-safe!) ordered reduction
over those checks, and if reduction returned true then return
saturation point else return the naive min/max reduction over the operands
```
https://alive2.llvm.org/ce/z/Q7jxvH (2 ops)
https://alive2.llvm.org/ce/z/QCRrhk (3 ops)
Note that we don't need to check the last operand: https://alive2.llvm.org/ce/z/abvHQS
Note that this is not commutative: https://alive2.llvm.org/ce/z/FK9e97
That allows us to handle the patterns in question.
Reviewed By: nikic, reames
Differential Revision: https://reviews.llvm.org/D116766
This ports the logic we generate in instcombine for a single use x.with.overflow check for use in SCEV's analysis. The result is that we can prove trip counts for many checks, and (through existing logic) often discharge them.
Motivation comes from compiling a simple example with -ftrapv.
Differential Revision: https://reviews.llvm.org/D116499
This patch updates applyLoopGuards to first collect all conditions and
then applies them in reverse order. This ensures the SCEVs with the
shortest dependency chains are constructed first, limiting the required
stack size.
This fixes a crash reported in D113578.
Note that the order conditions are applied can impact the accuracy of
the result, mostly due to missing min/max simplifications when
constructing SCEVs.
The changed test highlights the impact of the evaluation order. I will
follow up with a SCEV patch to improve min/max simplifications to get
the same results for both orders.
Fixes verification failure reported at:
https://reviews.llvm.org/rGc9f9be0381d1
The issue is that getSCEVAtScope() might compute a result without
inserting it in the ValuesAtScopes map in degenerate cases,
specifically if the ValuesAtScopes entry is invalidated during the
calculation. Arguably we should still insert the result if no
existing placeholder is found, but for now just tweak the logic
to only update ValuesAtScopesUsers if ValuesAtScopes is updated.
Track which SCEVs are used as ExactNotTaken counts in
BackedgeTakenInfo structures, so we can directly determine which
loops need to be invalidated, rather than iterating over all BECounts.
This gives a small compile-time improvement on average, but the
motivation here is more to ensure there are no degenerate cases,
if the number of backedge taken counts is large.
Differential Revision: https://reviews.llvm.org/D114784
ValuesAtScopes maps a SCEV and a Loop to another SCEV. While we
invalidate entries if the left-hand SCEV is invalidated, we
currently don't do this for the right-hand SCEV. Fix this by
tracking users in a reverse map and using it for invalidation.
This is conceptually the same change as D114738, but using the
reverse map to avoid performance issues.
Differential Revision: https://reviews.llvm.org/D114788
Fix assertion failure reported on D113349 by removing the assert.
While the produced expression should be equivalent, it may not
be strictly the same, e.g. due to lazy nowrap flag updates. Similar
to what the main createSCEV() code does, simply retain the old
value map entry if one already exists.