This implements the logic of the `common_type` base template as a
builtin alias. If there should be no `type` member, an empty class is
returned. Otherwise a specialization of a `type_identity`-like class is
returned. The base template (i.e. `std::common_type`) as well as the
empty class and `type_identity`-like struct are given as arguments to
the builtin.
We were incorrectly not deduplicating results when looking up `_` which,
for a lambda init capture, would result in an ambiguous lookup.
The same bug caused some diagnostic notes to be emitted twice.
Fixes#107024
Currently, `NamespaceDecl` has a member `AnonOrFirstNamespaceAndFlags`
which stores a few pieces of data:
- a bit indicating whether the namespace was declared `inline`, and
- a bit indicating whether the namespace was declared as a
_nested-namespace-definition_, and
- a pointer a `NamespaceDecl` that either stores:
- a pointer to the first declaration of that namespace if the
declaration is no the first declaration, or
- a pointer to the unnamed namespace that inhabits the namespace
otherwise.
`Redeclarable` already stores a pointer to the first declaration of an
entity, so it's unnecessary to store this in `NamespaceDecl`.
`DeclContext` has 8 bytes in which various bitfields can be stored for a
declaration, so it's not necessary to store these in `NamespaceDecl`
either. We only need to store a pointer to the unnamed namespace that
inhabits the first declaration of a namespace. This patch moves the two
bits currently stored in `NamespaceDecl` to `DeclContext`, and only
stores a pointer to the unnamed namespace that inhabits a namespace in
the first declaration of that namespace. Since `getOriginalNamespace`
always returns the same `NamespaceDecl` as `getFirstDecl`, this function
is removed to avoid confusion.
WG14 N3274 removed _Imaginary from Annex G. Clang has never fully
supported Annex G or _Imaginary, so removal is pretty trivial for us.
Note, we are keeping _Imaginary as a keyword so that we get better
diagnostic behavior. This is still conforming because _I makes it a
reserved identifier, so it's not available for users to use as an
identifier anyway.
This patch moves documentation of `Sema` functions from `.cpp` files to `Sema.h` when there was no documentation in the latter, or it can be trivially subsumed. More complicated cases when there's less trivial divergence between documentation attached to declaration and the one attached to implementation are left for a later PR that would require review.
It appears that doxygen can find the documentation for a function defined out-of-line even if it's attached to an implementation, and not declaration. But other tools, e.g. clangd, are not as powerful. So this patch significantly improves autocompletion experience for (at least) clangd-based IDEs.
module
Possibly fix https://github.com/llvm/llvm-project/issues/96693
The direct reason is that we are calculating the linkage for the
declaration too early so that the linkage got calculated incorrectly.
And after I look into the problem, I found it is completely not
necessary to calculate the linkage there. It is for ModulesTS. So I
simply removes that legacy experimental code and fix the issue.
This patch extracts the logci to decide how we decide the module units
belongs to the same module into a member function of ASTContext. This is
helpful to refactor the implementation in the future.
This patch moves `Sema` functions that are specific for RISC-V into the
new `SemaRISCV` class. This continues previous efforts to split `Sema`
up. Additional context can be found in
https://github.com/llvm/llvm-project/pull/84184.
This PR is somewhat different from previous PRs on this topic:
1. Splitting out target-specific functions wasn't previously discussed.
It felt quite natural to do, though.
2. I had to make some static function in `SemaChecking.cpp` member
functions of `Sema` in order to use them in `SemaRISCV`.
3. I dropped "RISCV" from identifiers, but decided to leave "RVV"
(RISC-V "V" vector extensions) intact. I think it's an idiomatic
abbreviation at this point, but I'm open to input from contributors in
that area.
4. I repurposed `SemaRISCVVectorLookup.cpp` for `SemaRISCV`.
I think this was a successful experiment, which both helps the goal of
splitting `Sema` up, and shows a way to approach `SemaChecking.cpp`,
which I wasn't sure how to approach before. As we move more
target-specific function out of there, we'll gradually make the checking
"framework" inside `SemaChecking.cpp` public, which is currently a whole
bunch of static functions. This would enable us to move more functions
outside of `SemaChecking.cpp`.
According to [expr.prim.id.general] p2:
> If an _id-expression_ `E` denotes a non-static non-type member of some
class `C` at a point where the current class is `X` and
> - `E` is potentially evaluated or `C` is `X` or a base class of `X`,
and
> - `E` is not the _id-expression_ of a class member access expression,
and
> - if `E` is a _qualified-id_, `E` is not the un-parenthesized operand
of the unary `&` operator,
>
> the _id-expression_ is transformed into a class member access
expression using `(*this)` as the object expression.
Consider the following:
```
struct A
{
void f0();
template<typename T>
void f1();
};
template<typename T>
struct B : T
{
auto g0() -> decltype(T::f0()); // ok
auto g1() -> decltype(T::template f1<int>()); // error: call to non-static member function without an object argument
};
template struct B<A>;
```
Clang incorrectly rejects the call to `f1` in the _trailing-return-type_
of `g1`. Furthermore, the following snippet results in a crash during
codegen:
```
struct A
{
void f();
};
template<typename T>
struct B : T
{
template<typename U>
static void g();
template<>
void g<int>()
{
return T::f(); // crash here
}
};
template struct B<A>;
```
This happens because we unconditionally build a
`CXXDependentScopeMemberExpr` (with an implicit object expression) for
`T::f` when parsing the template definition, even though we don't know
whether `g` is an implicit object member function yet.
This patch fixes these issues by instead building
`DependentScopeDeclRefExpr`s for such expressions, and only transforming
them into implicit class member access expressions during instantiation.
Since we implemented the MS "unqualified lookup into dependent bases"
extension by building an implicit class member access (and relying on
the first component name of the _nested-name-specifier_ to be looked up
in the context of the object expression during instantiation), we
instead pre-append a fake _nested-name-specifier_ that refers to the
injected-class-name of the enclosing class. This patch also refactors
`Sema::BuildQualifiedDeclarationNameExpr` and
`Sema::BuildQualifiedTemplateIdExpr`, streamlining their implementation
and removing any redundant checks.
This fixes a bug in #90152 where `operator=` was never looked up in the
current instantiation, resulting in `<` never being interpreted as the
start of a template argument list.
Since function templates are not copy/move assignment operators, the fix
is accomplished by allowing lookup in the current instantiation for
`operator=` when looking up a template name.
Reapplies #84050, addressing a bug which cases a crash when an
expression with the type of the current instantiation is used as the
_postfix-expression_ in a class member access expression (arrow form).
Consider the following:
```cpp
template<typename T>
struct A
{
auto f()
{
return this->x;
}
};
```
Although `A` has no dependent base classes and the lookup context for
`x` is the current instantiation, we currently do not diagnose the
absence of a member `x` until `A<T>::f` is instantiated. This patch
moves the point of diagnosis for such expressions to occur at the point
of definition (i.e. prior to instantiation).
This patch converts the enum into scoped enum, and moves it into its own header for the time being. It's definition is needed in `Sema.h`, and is going to be needed in upcoming `SemaObjC.h`. `Lookup.h` can't hold it, because it includes `Sema.h`.
HLSL constant sized array function parameters do not decay to pointers.
Instead constant sized array types are preserved as unique types for
overload resolution, template instantiation and name mangling.
This implements the change by adding a new `ArrayParameterType` which
represents a non-decaying `ConstantArrayType`. The new type behaves the
same as `ConstantArrayType` except that it does not decay to a pointer.
Values of `ConstantArrayType` in HLSL decay during overload resolution
via a new `HLSLArrayRValue` cast to `ArrayParameterType`.
`ArrayParamterType` values are passed indirectly by-value to functions
in IR generation resulting in callee generated memcpy instructions.
The behavior of HLSL function calls is documented in the [draft language
specification](https://microsoft.github.io/hlsl-specs/specs/hlsl.pdf)
under the Expr.Post.Call heading.
Additionally the design of this implementation approach is documented in
[Clang's
documentation](https://clang.llvm.org/docs/HLSL/FunctionCalls.html)
Resolves#70123
This patch converts `Sema::TemplateDeductionResult` into a scoped enum
in namespace scope, making it eligible for forward declaring. This is
useful in certain contexts, such as `preferred_type` annotations on
bit-fields.
Previously committed as 9e08e51a20d0d2b1c5724bb17e969d036fced4cd, and
reverted because a dependency commit was reverted, then committed again
as 4b574008aef5a7235c1f894ab065fe300d26e786 and reverted again because
"dependency commit" 5a391d38ac6c561ba908334d427f26124ed9132e was
reverted. But it doesn't seem that 5a391d38ac6c was a real dependency
for this.
This commit incorporates 4b574008aef5a7235c1f894ab065fe300d26e786 and
18e093faf726d15f210ab4917142beec51848258 by Richard Smith (@zygoloid),
with some minor fixes, most notably:
- `UncommonValue` renamed to `StructuralValue`
- `VK_PRValue` instead of `VK_RValue` as default kind in lvalue and
member pointer handling branch in
`BuildExpressionFromNonTypeTemplateArgumentValue`;
- handling of `StructuralValue` in `IsTypeDeclaredInsideVisitor`;
- filling in `SugaredConverted` along with `CanonicalConverted`
parameter in `Sema::CheckTemplateArgument`;
- minor cleanup in
`TemplateInstantiator::transformNonTypeTemplateParmRef`;
- `TemplateArgument` constructors refactored;
- `ODRHash` calculation for `UncommonValue`;
- USR generation for `UncommonValue`;
- more correct MS compatibility mangling algorithm (tested on MSVC ver.
19.35; toolset ver. 143);
- IR emitting fixed on using a subobject as a template argument when the
corresponding template parameter is used in an lvalue context;
- `noundef` attribute and opaque pointers in `template-arguments` test;
- analysis for C++17 mode is turned off for templates in
`warn-bool-conversion` test; in C++17 and C++20 mode, array reference
used as a template argument of pointer type produces template argument
of UncommonValue type, and
`BuildExpressionFromNonTypeTemplateArgumentValue` makes
`OpaqueValueExpr` for it, and `DiagnoseAlwaysNonNullPointer` cannot see
through it; despite of "These cases should not warn" comment, I'm not
sure about correct behavior; I'd expect a suggestion to replace `if` by
`if constexpr`;
- `temp.arg.nontype/p1.cpp` and `dr18xx.cpp` tests fixed.
Close https://github.com/llvm/llvm-project/issues/73893
As the issue shows, generally, the diagnose information for
invisible namespace is confusing more than helpful. Also this patch
implements the same solution as suggested in the issue: don't diagnose
on invisible namespace.
Due to an oversight, when users use an unexported declaration from
implicit global module, the diagnostic will show "please #include"
instead of "please import". This patch corrects the behavior.
Also previously, when users use an unexported declarations from module
partitions, the diagnostic message will always show the partition name
no matter if that partition name is visible to the users. Now the users
may only see the partition name if the users are in the same module with
the partition unit.
Close https://github.com/llvm/llvm-project/issues/71347
Previously I misread the concept of module purview. I thought if a
declaration attached to a unnamed module, it can't be part of the module
purview. But after the issue report, I recognized that module purview is
more of a concept about locations instead of semantics.
Concretely, the things in the language linkage after module declarations
can be exported.
This patch refactors `Module::isModulePurview()` and introduces some
possible code cleanups.
When a function is declared in the same scope as a class with the same
name then the function hides that class. Currently this is done by a
single check after the main loop in LookupResult::resolveKind, but
this can give the wrong result when we have a using declaration in
multiple namespace scopes in two different ways:
* When the using declaration is hidden in one namespace but not the
other we can end up considering only the hidden one when deciding
if the result is ambiguous, causing an incorrect "not ambiguous"
result.
* When two classes with the same name in different namespace scopes
are both hidden by using declarations this can result in
incorrectly deciding the result is ambiguous. There's currently a
comment saying this is expected, but I don't think that's correct.
Solve this by checking each Decl to see if it's hidden by some other
Decl in the same scope. This means we have to delay removing anything
from Decls until after the main loop, in case a Decl is hidden by
another that is removed due to being non-unique.
Differential Revision: https://reviews.llvm.org/D154503
- Rename the IsSystem flag to be IsAngled since that's how callers
actually use the flag.
- Since frameworks by convention use <> style includes, make sure
we treat them as Angled
Also update clangd's custom logic for frameworks accordingly.
Differential Revision: https://reviews.llvm.org/D156704
This is a C++ feature that allows the use of `_` to
declare multiple variable of that name in the same scope;
these variables can then not be referred to.
In addition, while P2169 does not extend to parameter
declarations, we stop warning on unused parameters of that name,
for consistency.
The feature is backported to all C++ language modes.
Reviewed By: #clang-language-wg, aaron.ballman
Differential Revision: https://reviews.llvm.org/D153536
When a function is declared in the same scope as a class with the same
name then the function hides that class. Currently this is done by a
single check after the main loop in LookupResult::resolveKind, but
this can give the wrong result when we have a using declaration in
multiple namespace scopes in two different ways:
* When the using declaration is hidden in one namespace but not the
other we can end up considering only the hidden one when deciding
if the result is ambiguous, causing an incorrect "not ambiguous"
result.
* When two classes with the same name in different namespace scopes
are both hidden by using declarations this can result in
incorrectly deciding the result is ambiguous. There's currently a
comment saying this is expected, but I don't think that's correct.
Solve this by checking each Decl to see if it's hidden by some other
Decl in the same scope. This means we have to delay removing anything
from Decls until after the main loop, in case a Decl is hidden by
another that is removed due to being non-unique.
Differential Revision: https://reviews.llvm.org/D154503
When a function is declared in the same scope as a class with the same
name then the function hides that class. Currently this is done by a
single check after the main loop in LookupResult::resolveKind, but
this can give the wrong result when we have a using declaration in
multiple namespace scopes in two different ways:
* When the using declaration is hidden in one namespace but not the
other we can end up considering only the hidden one when deciding
if the result is ambiguous, causing an incorrect "not ambiguous"
result.
* When two classes with the same name in different namespace scopes
are both hidden by using declarations this can result in
incorrectly deciding the result is ambiguous. There's currently a
comment saying this is expected, but I don't think that's correct.
Solve this by checking each Decl to see if it's hidden by some other
Decl in the same scope. This means we have to delay removing anything
from Decls until after the main loop, in case a Decl is hidden by
another that is removed due to being non-unique.
Differential Revision: https://reviews.llvm.org/D154503
The existing code assumes that both `DeclareRISCVVBuiltins` and
`DeclareRISCVSiFiveVectorBuiltins` are set when coming into the if-statement
under SemaLookup.cpp.
This is not the case and causes issue #63571.
This patch resolves the issue.
Reviewed By: 4vtomat, kito-cheng
Differential Revision: https://reviews.llvm.org/D154050
I found this during the support of modules for clangd. The reason for
the issue is that the iterator returned by noload_lookups is fast-fail
after the lookup table changes by the design of llvm::DenseMap. And
originally the lookup will try to use getAcceptableDecl to filter the
invisible decls. The key point here is that the function
"getAcceptableDecl" wouldn't stop after it find the specific decl is
invisble. It will continue to visit its redecls to find a visible one.
However, such process involves loading decls from external sources,
which results the invalidation.
Note that the use of "noload_lookups" is rare. It is only used in tools
like FixTypos and CodeCompletions. So it is completely fine for the
tranditional compiler. This is the reason why I can't reproduce it by a
lit test.
Decl::isInAnotherModuleUnit
Refactor `Sema::isModuleUnitOfCurrentTU` to `Decl::isInAnotherModuleUnit`
to make code simpler a little bit. Note that although this patch
introduces a FIXME, this is an existing issue and this patch just tries
to describe it explicitly.
The original code uses getTopLevelModuleName to compare if the module
matches. This is an overkill. Since in one program there will only be at
most one module name. So it is good enough to compare the module
directly. So that we can save some string comparisons.
even if its initializer has side effects
Close https://github.com/llvm/llvm-project/issues/61892
The variables whose initializer has side effects will be emitted even if
it is not used. But it shouldn't be true after we introduced modules.
The variables in other modules shouldn't be emitted if it is not used
even if its initializer has size effects.
Also this patch rename `Decl::isInCurrentModuleUnit` to
`Decl::isInAnotherModuleUnit` to make it closer to the semantics.
Decl::isInCurrentModuleUnit
Refactor `Sema::isModuleUnitOfCurrentTU` to `Decl::isInCurrentModuleUnit`
to make code simpler a little bit. Note that although this patch
introduces a FIXME, this is an existing issue and this patch just tries
to describe it explicitly.
Close https://github.com/llvm/llvm-project/issues/62589.
Previously, for global module fragments, we will justify if it is
visible by the visibility of their top level parents. But this is an
overkill, it is problematic if we have a deduction guide in the global
module fragments. See the attached test for example. In this example, we
will mark the global module fragments as visible, but our old strategy
will miss the case surprisingly due to we will only search for the top
level modules.
Since we don't always need the vendor extension to be in riscv_vector.td,
so it's better to make it be in separated header.
Depends on D148223 and D148680
Differential Revision: https://reviews.llvm.org/D148308