This is a helper to avoid writing `getModule()->getDataLayout()`. I
regularly try to use this method only to remember it doesn't exist...
`getModule()->getDataLayout()` is also a common (the most common?)
reason why code has to include the Module.h header.
There is no need to iterate all predecessors of current block, check if
current block is the invoke unwind destination of any predecessor. We
can directly call `BasicBlock::isEHPad()` to check if current block is
an exception handling block.
The `LoopBlock` stored in `LoopWorkList` consist of basic block and its
loop data information. When iterate `LoopWorkList`, if estimated weight
of a loop is not stored in `EstimatedLoopWeight`, `getLoopExitBlocks()`
is called to get all exit blocks of the loop. The estimated weight of a
loop is calculated by iterating over edges leading from basic block to
all exit blocks of the loop. If at least one edge has unknown estimated
weight, the estimated weight of loop is unknown and will not be stored
in `EstimatedLoopWeight`. `LoopWorkList` can contain different blocks in
a same loop, so there is wasted work that calls `getLoopExitBlocks()`
for same loop multiple times.
Since computing the exit blocks of loop is expensive and the loop
structure is not mutated in Branch Probability Analysis, we can cache
the result and improve compile time.
With this change, the overall compile time for a file containing a very
large loop is dropped by around 82%.
Use ICmpInst::compare() where possible, ConstantFoldCompareInstOperands
in other places. This only changes places where the either the fold is
guaranteed to succeed, or the code doesn't use the resulting compare if
we fail to fold.
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
53 under llvm/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".
When using `BranchProbabilityPrinterPass`, if a BB has no name, we get pretty unusable information like `edge -> has probability...` (i.e. we have no idea what the vertices of that edge are).
This patch uses `printAsOperand`, which uses the same naming scheme as `Function::dump`, so for example during debugging sessions, the IR obtained from a function and the names used by `BranchProbabilityPrinterPass` will match.
A shortcoming is that `printAsOperand` will result in the numbering algorithm re-running for every edge and every vertex (when `BranchProbabilityPrinterPass` is run on a function). If, for the given scenario, this is a problem, we can revisit this subsequently.
Another nuance is that the entry basic block will be numbered, which may be slightly confusing when it's anonymous, but it's easily identifiable - the first edge would have it as source (and the number should be easily recognizable)
- Change `BranchProbabilityPrinterPass` output to match expectations of `update_analyze_test_checks.py`.
- Add `Branch Probability Analysis` to list of supported analyses.
- Process `llvm/test/Analysis/BranchProbabilityInfo/basic.ll` with `update_analyze_test_checks.py` as proof of concept. Leaving the other tests unchanged to reduce the amount of churn.
The motivation is need to update branch probability info after
swapping successors of branch instruction.
Differential Revision: https://reviews.llvm.org/D148237
Reviewed By: nikic
When debugging and using debug-pass-manager (e.g. in regression tests)
we prefer a consistent order in which analysis passes are executed.
But when for example doing
return MyClass(AM.getResult<LoopAnalysis>(F),
AM.getResult<DominatorTreeAnalysis>(F));
then the order in which LoopAnalysis and DominatorTreeAnalysis isn't
guaranteed, and might for example depend on which compiler that is
used when building LLVM.
I've not scanned the full source tree, but this fixes some occurances
of the above pattern found in lib/Analysis.
This problem was discussed briefly in review for D146206.
value() has undesired exception checking semantics and calls
__throw_bad_optional_access in libc++. Moreover, the API is unavailable without
_LIBCPP_NO_EXCEPTIONS on older Mach-O platforms (see
_LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS).
This commit fixes LLVMAnalysis and its dependencies.
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
We currently instrument CallBrInst but do not annotate it with
the branch weight. This patch enables PGO annotation of CallBrInst.
Differential Revision: https://reviews.llvm.org/D133040
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Use ConstantFoldBinaryOpOperands() instead, to prepare for the case
where not all binary operators have a constant expression form.
I believe this code actually intended to set OnlyIfReduced=true,
however ConstantExpr::get() actually accepts a Flags argument at
that position (and OnlyIfReducedTy as the next argument), so this
ended up creating a constant expression with some random flag
(probably exact or nuw depending on which).
This adds and uses look-up tables for non-loop branch probabilities, which have
have probabilities directly encoded into the tables for the different condition
codes. Compared to having this logic inlined in different functions, as it used
to be the case, I think this is compacter and thus also easier to check/cross
reference. This also adds a test for pointer heuristics that was missing.
Differential Revision: https://reviews.llvm.org/D114009
The function BranchProbabilityInfo::SccInfo::getSccExitBlocks is
supposed to collect all exit blocks for SCC rather than all exiting
blocks. This patch fixes the typo.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D113344
Current approach doesn't work well in cases when multiple paths are predicted to be "cold". By "cold" paths I mean those containing "unreachable" instruction, call marked with 'cold' attribute and 'unwind' handler of 'invoke' instruction. The issue is that heuristics are applied one by one until the first match and essentially ignores relative hotness/coldness
of other paths.
New approach unifies processing of "cold" paths by assigning predefined absolute weight to each block estimated to be "cold". Then we propagate these weights up/down IR similarly to existing approach. And finally set up edge probabilities based on estimated block weights.
One important difference is how we propagate weight up. Existing approach propagates the same weight to all blocks that are post-dominated by a block with some "known" weight. This is useless at least because it always gives 50\50 distribution which is assumed by default anyway. Worse, it causes the algorithm to skip further heuristics and can miss setting more accurate probability. New algorithm propagates the weight up only to the blocks that dominates and post-dominated by a block with some "known" weight. In other words, those blocks that are either always executed or not executed together.
In addition new approach processes loops in an uniform way as well. Essentially loop exit edges are estimated as "cold" paths relative to back edges and should be considered uniformly with other coldness/hotness markers.
Reviewed By: yrouban
Differential Revision: https://reviews.llvm.org/D79485
Constant hoisting may hide the constant value behind bitcast for And's
operand. Track down the constant to make the BFI result consistent
regardless of hoisting.
Differential Revision: https://reviews.llvm.org/D91450
This patch teaches the jump threading pass to call BPI->eraseBlock
when it folds a conditional branch.
Without this patch, BranchProbabilityInfo could end up with stale edge
probabilities for the basic block containing the conditional branch --
one edge probability with less than 1.0 and the other for a removed
edge.
This patch is one of the steps before we can safely re-apply D91017.
Differential Revision: https://reviews.llvm.org/D91511
This patch simplifies BranchProbabilityInfo by changing the type of
Probs.
Without this patch:
DenseMap<Edge, BranchProbability> Probs
maps an ordered pair of a BasicBlock* and a successor index to an edge
probability.
With this patch:
DenseMap<const BasicBlock *, SmallVector<BranchProbability, 2>> Probs
maps a BasicBlock* to a vector of edge probabilities.
BranchProbabilityInfo has a property that for a given basic block, we
either have edge probabilities for all successors or do not have any
edge probability at all. This property combined with the current map
type leads to a somewhat complicated algorithm in eraseBlock to erase
map entries one by one while increasing the successor index.
The new map type allows us to remove the all edge probabilities for a
given basic block in a more intuitive manner, namely:
Probs.erase(BB);
Differential Revision: https://reviews.llvm.org/D91017
The patch simplifies BranchProbabilityInfo::getEdgeProbability by
handling two cases separately, depending on whether we have edge
probabilities.
- If we have edge probabilities, then add up probabilities for
successors being equal to Dst.
- Otherwise, return the number of ocurrences divided by the total
number of successors.
Differential Revision: https://reviews.llvm.org/D90980
A new method is introduced to allow bulk copy of outgoing edge
probabilities from one block to another. This can be useful when
a block is cloned from another one and we do not know if there
are edge probabilities set for the original block or not.
Copying outside of the BranchProbabilityInfo class makes the user
unconditionally set the cloned block's edge probabilities even if
they are unset for the original block.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D90839
BranchProbabilityInfo::eraseBlock() is a public method and
can be called without deleting the block itself.
This method is made remove the correspondent tracking handle
from BranchProbabilityInfo::Handles along with
the probabilities of the block. Handles.erase() call is moved
to eraseBlock().
In setEdgeProbability() we need to add the block handle only once.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D90838
This refactoring allows to eliminate the MaxSuccIdx map
proposed in the commit a7b662d0.
The idea is to remove probabilities for a block BB for
all its successors one by one from first, second, ...
till N-th until they are defined in Probs. This works
because probabilities for the block are set at once for
all its successors from number 0 to N-1 and the rest
are removed if there were stale probs.
The protected method setEdgeProbability(), which set
probabilities for individual successor, is removed.
This makes it clear that the probabilities are set in
bulk by the public method with the same name.
Reviewed By: kazu, MaskRay
Differential Revision: https://reviews.llvm.org/D90837
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This patch ensures that BranchProbabilityInfo::eraseBlock(BB) deletes
all entries in Probs associated with with BB.
Without this patch, stale entries for BB may remain in Probs after
eraseBlock(BB), leading to a situation where a newly created basic
block has an edge probability associated with it even before the pass
responsible for creating the basic block adds any edge probability to
it.
Consider the current implementation of eraseBlock(BB):
for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
auto MapI = Probs.find(std::make_pair(BB, I.getSuccessorIndex()));
if (MapI != Probs.end())
Probs.erase(MapI);
}
Notice that it uses succ_begin(BB) and succ_end(BB), which are based
on BB->getTerminator(). This means that if the terminator changes
between calls to setEdgeProbability and eraseBlock, then we may not
examine all pairs associated with BB.
This is exactly what happens in MaybeMergeBasicBlockIntoOnlyPred,
which merges basic blocks A into B if A is the sole predecessor of B,
and B is the sole successor of A. It replaces the terminator of A
with UnreachableInst before (indirectly) calling eraseBlock(A).
The patch fixes the problem by keeping track of all edge probablities
entered with setEdgeProbability in a map from BasicBlock* to a
successor index.
Differential Revision: https://reviews.llvm.org/D90272