giving them rough classifications (normal types, never-canonical
types, always-dependent types, abstract type representations) and
making it far easier to make sure that we've hit all of the cases when
decoding types.
Switched some switch() statements on the type class over to using this
mechanism, and filtering out those things we don't care about. For
example, CodeGen should never see always-dependent or non-canonical
types, while debug info generation should never see always-dependent
types. More switch() statements on the type class need to be moved
over to using this approach, so that we'll get warnings when we add a
new type then fail to account for it somewhere in the compiler.
As part of this, some types have been renamed:
TypeOfExpr -> TypeOfExprType
FunctionTypeProto -> FunctionProtoType
FunctionTypeNoProto -> FunctionNoProtoType
There shouldn't be any functionality change...
llvm-svn: 65591
nicely sugared type that shows how the user wrote the actual
specialization. This sugared type won't actually show up until we
start doing instantiations.
llvm-svn: 65577
I know, these follow the exact same rules as pointers, so I just made
them use the same codepath. Someone more familiar with ObjC should
double-check this, though.
llvm-svn: 65261
Found while researching <rdar://problem/6497631> Message lookup is sometimes different than gcc's.
Will never be seen in user code. Needed to pass dejagnu testsuite.
llvm-svn: 65244
Should clang have a config.h or should we use the config.h of llvm or using the preprocessor is OK? I did a quick fix here, but having a guideline on how to handle non portable function would be great (or ask ted to stop breaking the windows build :)).
llvm-svn: 65233
Move two key ObjC typechecks from Sema::CheckPointerTypesForAssignment() to ASTContext::mergeTypes().
This allows us to take advantage of the recursion in ASTContext::mergeTypes(), removing some bogus warnings.
This test case I've added includes an example where we still warn (and GCC doesn't). Need to talk with folks and decide what to do. At this point, the major bogosities should be fixed.
llvm-svn: 65231
- Renamed to getDeclAlignInBytes since most other query functions
work in bits.
- Fun to track down as isIntegerConstantExpr was getting it right,
but Evaluate() was getting it wrong. Maybe we should assert they
compute the same thing when they succeed?
llvm-svn: 64828
which consequently caused a Seg fault. during meta-data
generation. It also addresses an issue related to
late binding of newly synthesize ivars (when we support it).
llvm-svn: 64563
Currently only used for 128-bit integers.
Note that we can't use the fixed-width integer types for other integer
modes without other changes because glibc headers redefines (u)int*_t
and friends using the mode attribute. For example, this means that uint64_t
has to be compatible with unsigned __attribute((mode(DI))), and
uint64_t is currently defined to long long. And I have a feeling we'll
run into issues if we try to define uint64_t as something which isn't
either long or long long.
This doesn't get the alignment right in most cases, including
the 128-bit integer case; I'll file a PR shortly. The gist of the issue
is that the targets don't really expose the information necessary to
figure out the alignment outside of the target description, so there's a
non-trivial amount of work involved in getting it working right. That
said, the alignment used is conservative, so the only issue with the
current implementation is ABI compatibility.
This makes it trivial to add some sort of "bitwidth" attribute to make
arbitrary-width integers; I'll do that in a followup.
We could also use this for stuff like the following for compatibility
with gcc, but I have a feeling it would be a better idea for clang to be
consistent between C and C++ modes rather than follow gcc's example for
C mode.
struct {unsigned long long x : 33;} x;
unsigned long long a(void) {return x.x+1;}
llvm-svn: 64434
- rename isObjCIdType/isObjCClassType -> isObjCIdStructType/isObjCClassStructType. The previous name didn't do what you would expect.
- add back isObjCIdType/isObjCClassType to do what you would expect. Not currently used, however many of the isObjCIdStructType/isObjCClassStructType clients could be converted over time.
- move static Sema function areComparableObjCInterfaces to ASTContext (renamed to areComparableObjCPointerTypes, since it now operates on pointer types).
llvm-svn: 64385
to a class template. For example, the template-id 'vector<int>' now
has a nice, sugary type in the type system. What we can do now:
- Parse template-ids like 'vector<int>' (where 'vector' names a
class template) and form proper types for them in the type system.
- Parse icky template-ids like 'A<5>' and 'A<(5 > 0)>' properly,
using (sadly) a bool in the parser to tell it whether '>' should
be treated as an operator or not.
This is a baby-step, with major problems and limitations:
- There are currently two ways that we handle template arguments
(whether they are types or expressions). These will be merged, and,
most likely, TemplateArg will disappear.
- We don't have any notion of the declaration of class template
specializations or of template instantiations, so all template-ids
are fancy names for 'int' :)
llvm-svn: 64153
canonicalize by template parameter depth, index, and name, and the
unnamed version of a template parameter serves as the canonical.
TemplateTypeParmDecl no longer needs to inherit from
TemplateParmPosition, since depth and index information is present
within the type.
llvm-svn: 63899
Also changed FunctionTypeProto to be allocated with 8-byte alignment (noticed by Doug). I couldn't think of any reason to allocate on 16-byte boundaries. If anyone remembers why we were doing this, let me know!
llvm-svn: 63137
that every declaration lives inside a DeclContext.
Moved several things that don't have names but were ScopedDecls (and,
therefore, NamedDecls) to inherit from Decl rather than NamedDecl,
including ObjCImplementationDecl and LinkageSpecDecl. Now, we don't
store empty DeclarationNames for these things, nor do we try to insert
them into DeclContext's lookup structure.
The serialization tests are temporarily disabled. We'll re-enable them
once we've sorted out the remaining ownership/serialiazation issues
between DeclContexts and TranslationUnion, DeclGroups, etc.
llvm-svn: 62562