Currently we unconditionally get the first lane of the condition
operand, even if we later use the full vector condition. This can result
in some unnecessary instructions being generated.
Suggested as follow-up in D80219.
VPWidenSelectRecipe already contains a VPUser, but it is not used. This
patch updates the code related to VPWidenSelectRecipe to use VPUser for
its operands.
Reviewers: Ayal, gilr, rengolin
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D80219
Combine the two API calls into one by introducing a structure to hold
the relevant data. This has the added benefit of moving the boiler
plate code for arguments and flags, into the constructors. This is
intended to be a non-functional change, but the complicated web of
logic involved here makes it very hard to guarantee.
Differential Revision: https://reviews.llvm.org/D79941
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee06, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
This patch adds VPValue version of the instruction operands to
VPReplicateRecipe and uses them during code-generation.
Reviewers: Ayal, gilr, rengolin
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D80114
We can remove a dynamic memory allocation, by checking the number of
operands: no operands = all true, 1 operand = mask.
Reviewers: Ayal, gilr, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D80110
LV considers an internally computed MaxVF to decide if a constant trip-count is
a multiple of any subsequently chosen VF, and conclude that no scalar remainder
iterations (tail) will be left for Fold Tail to handle. If an external VF is
provided via -force-vector-width, it must be considered instead of the internal
MaxVF.
If an external UF is provided via -force-vector-interleave, it too must be
considered in addition to MaxVF or user VF.
Fixes PR45679.
Differential Revision: https://reviews.llvm.org/D80085
verifyFunction/verifyModule don't assert or error internally. They
also don't print anything if you don't pass a raw_ostream to them.
So the caller needs to check the result and ideally pass a stream
to get the messages. Otherwise they're just really expensive no-ops.
I've filed PR45965 for another instance in SLPVectorizer
that causes a lit test failure.
Differential Revision: https://reviews.llvm.org/D80106
Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
The patch standardizes printing of VPRecipes a bit, by hoisting out the
common emission of \\l\"+\n. It simplifies the code and is also a first
step towards untangling printing from DOT format output, with the goal
of making the DOT output optional and to provide a more concise debug
output if DOT output is disabled.
Reviewers: gilr, Ayal, rengolin
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D78883
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Currently LAA's uses of ScalarEvolutionExpander blocks moving the
expander from Analysis to Transforms. Conceptually the expander does not
fit into Analysis (it is only used for code generation) and
runtime-check generation also seems to be better suited as a
transformation utility.
Reviewers: Ayal, anemet
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78460
The failing assertion has been fixed and the problematic test case has
been added.
This reverts the revert commit fc44617f28847417e55836193bbe8e9c3f09eca9.
In order to reduce the API surface area (preparation for D78460), remove
a addRuntimeChecks() function and do the additional check in the single
caller.
Reviewers: Ayal, anemet
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D79679
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Differential Revision: https://reviews.llvm.org/D78911
getScalarizationOverhead is only ever called with vectors (and we already had a load of cast<VectorType> calls immediately inside the functions).
Followup to D78357
Reviewed By: @samparker
Differential Revision: https://reviews.llvm.org/D79341
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
The improvements to the x86 vector insert/extract element costs in D74976 resulted in the estimated costs for vector initialization and scalarization increasing higher than should be expected. This is particularly noticeable on pre-SSE4 targets where the available of legal INSERT_VECTOR_ELT ops is more limited.
This patch does 2 things:
1 - it implements X86TTIImpl::getScalarizationOverhead to more accurately represent the typical costs of a ISD::BUILD_VECTOR pattern.
2 - it adds a DemandedElts mask to getScalarizationOverhead to permit the SLP's BoUpSLP::getGatherCost to be rewritten to use it directly instead of accumulating raw vector insertion costs.
This fixes PR45418 where a v4i8 (zext'd to v4i32) was no longer vectorizing.
A future patch should extend X86TTIImpl::getScalarizationOverhead to tweak the EXTRACT_VECTOR_ELT scalarization costs as well.
Reviewed By: @craig.topper
Differential Revision: https://reviews.llvm.org/D78216
The crash that caused the original revert has been fixed in
a3c964a278b4. I also added a reduced version of the crash reproducer.
This reverts the revert commit 2107af9ccfdfe67a90ea9ed4f3bfd7c72c4e29ac.
One of transforms the loop vectorizer makes is LCSSA formation. In some cases it
is the only transform it makes. We should not drop CFG analyzes if only LCSSA was
formed and no actual CFG changes was made.
We should think of expanding this logic to other passes as well, and maybe make
it a part of PM framework.
Reviewed By: Florian Hahn
Differential Revision: https://reviews.llvm.org/D78360
This reverts commit 9245c7ac13480ed48ae339ad0e68cbe680cd0642.
This is triggering a segfault in XLA downstream, we'll follow-up with
a reproducer, it is likely influenced by TTI/TLI settings or other
options as a simple `opt -loop-vectorize` invocation on the IR
before the crash does not reproduce immediately.
This patch adds VPValue version of the instruction operands to
VPWidenRecipe and uses them during code-generation.
Similar to D76373 this reduces ingredient def-use usage by ILV as
a step towards full VPlan-based def-use relations.
Reviewers: rengolin, Ayal, gilr
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D76992
The individual tryTo* helpers do not need to be public. Also, the
builder contained two consecutive public: sections, which is not
necessary. Moved the remaining public methods after the constructor.
Also make some of the tryTo* helpers const.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed by: gilr
Differential Revision: https://reviews.llvm.org/D78288
This patch includes some clean-ups to tryToCreateRecipe, suggested in
D77973.
It includes:
* Renaming tryToCreateRecipe to tryToCreateWidenRecipe.
* Move VPBB insertion logic to caller of tryToCreateWidenRecipe.
* Hoists instruction checks to tryToCreateWidenRecipe, making it
clearer which instructions are handled by which recipe, simplifying
the checks by using early exits.
* Split up handling of induction PHIs and truncates using inductions.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78287
The API for shuffles and reductions uses generic Type parameters,
instead of VectorType, and so assertions and casts are used a lot.
This patch makes those types explicit, which means that the clients
can't be lazy, but results in less ambiguity, and that can only be a
good thing.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=45562
Differential Revision: https://reviews.llvm.org/D78357
Cost-modeling decisions are tied to the compute interleave groups
(widening decisions, scalar and uniform values). When invalidating the
interleave groups, those decisions also need to be invalidated.
Otherwise there is a mis-match during VPlan construction.
VPWidenMemoryRecipes created initially are left around w/o converting them
into VPInterleave recipes. Such a conversion indeed should not take place,
and these gather/scatter recipes may in fact be right. The crux is leaving around
obsolete CM_Interleave (and dependent) markings of instructions along with
their costs, instead of recalculating decisions, costs, and recipes.
Alternatively to forcing a complete recompute later on, we could try
to selectively invalidate the decisions connected to the interleave
groups. But we would likely need to run the uniform/scalar value
detection parts again anyways and the extra complexity is probably not
worth it.
Fixes PR45572.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78298
After introducing VPWidenSelectRecipe, the duplicated logic can be
shared.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D77973
Handling LoadInst and StoreInst in tryToWiden seems a bit
counter-intuitive, as there is only an assertion for them and in no
case VPWidenRefipes are created for them.
I think it makes sense to move the assertion to handleReplication, where
the non-widened loads and store are handled.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D77972
Fix an assert introduced in 41ed5d856c1: a phi with a single predecessor and a
mask is a valid case which is already supported by the code.
Differential Revision: https://reviews.llvm.org/D78115
Summary:
Currently, the internal options -vectorize-loops, -vectorize-slp, and
-interleave-loops do not have much practical effect. This is because
they are used to initialize the corresponding flags in the pass
managers, and those flags are then unconditionally overwritten when
compiling via clang or via LTO from the linkers. The only exception was
-vectorize-loops via opt because of some special hackery there.
While vectorization could still be disabled when compiling via clang,
using -fno-[slp-]vectorize, this meant that there was no way to disable
it when compiling in LTO mode via the linkers. This only affected
ThinLTO, since for regular LTO vectorization is done during the compile
step for scalability reasons. For ThinLTO it is invoked in the LTO
backends. See also the discussion on PR45434.
This patch makes it so the internal options can actually be used to
disable these optimizations. Ultimately, the best long term solution is
to mark the loops with metadata (similar to the approach used to fix
-fno-unroll-loops in D77058), but this enables a shorter term
workaround, and actually makes these internal options useful.
I constant propagated the initial values of these internal flags into
the pass manager flags (for some reasons vectorize-loops and
interleave-loops were initialized to true, while vectorize-slp was
initialized to false). As mentioned above, they are overwritten
unconditionally so this doesn't have any real impact, and these initial
values aren't particularly meaningful.
I then changed the passes to check the internl values and return without
performing the associated optimization when false (I changed the default
of -vectorize-slp to true so the options behave similarly). I was able
to remove the hackery in opt used to get -vectorize-loops=false to work,
as well as a special option there used to disable SLP vectorization.
Finally, I changed thinlto-slp-vectorize-pm.c to:
a) Only test SLP (moved the loop vectorization checking to a new test).
b) Use code that is slp vectorized when it is enabled, and check that
instead of whether the pass is enabled.
c) Test the new behavior of -vectorize-slp.
d) Test both pass managers.
The loop vectorization (and associated interleaving) testing I moved to
a new thinlto-loop-vectorize-pm.c test, with several changes:
a) Changed the flags on the interleaving testing so that it will
actually interleave, and check that.
b) Test the new behavior of -vectorize-loops and -interleave-loops.
c) Test both pass managers.
Reviewers: fhahn, wmi
Subscribers: hiraditya, steven_wu, dexonsmith, cfe-commits, davezarzycki, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77989
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: rriddle, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77259
Pass from the calling recipe the interleave group itself instead of passing the
group's insertion position and having the function query CM for its interleave
group and making sure that given instruction is the insertion point of.
Differential Revision: https://reviews.llvm.org/D78002
Widening a selects depends on whether the condition is loop invariant or
not. Rather than checking during codegen-time, the information can be
recorded at the VPlan construction time.
This was suggested as part of D76992, to reduce the reliance on
accessing the original underlying IR values.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D77869
InnerLoopVectorizer's code called during VPlan execution still relies on
original IR's def-use relations to decide which vector code to generate,
limiting VPlan transformations ability to modify def-use relations and still
have ILV generate the vector code.
This commit introduces VPValues for VPBlendRecipe to use as the values to
blend. The recipe is generated with VPValues wrapping the phi's incoming values
of the scalar phi. This reduces ingredient def-use usage by ILV as a step
towards full VPlan-based def-use relations.
Differential Revision: https://reviews.llvm.org/D77539
Introduce a new VPWidenCanonicalIVRecipe to generate a canonical vector
induction for use in fold-tail-with-masking, if a primary induction is absent.
The canonical scalar IV having start = 0 and step = VF*UF, created during code
-gen to control the vector loop, is widened into a canonical vector IV having
start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF} and
step = <VF*UF, VF*UF, ..., VF*UF>.
Differential Revision: https://reviews.llvm.org/D77635
When building a VPlan, BasicBlock::instructionsWithoutDebug() is used to
iterate over the instructions in a block. This means that no recipes
should be created for debug info intrinsics already and we can turn the
early exit into an assertion.
Reviewers: Ayal, gilr, rengolin, aprantl
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D77636
This patch adds VPValue versions for the arguments of the call to
VPWidenCallRecipe and uses them during code-generation.
Similar to D76373 this reduces ingredient def-use usage by ILV as
a step towards full VPlan-based def-use relations.
Reviewers: Ayal, gilr, rengolin
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D77655
This patch moves calls to their own recipe, to simplify the transition
to VPUser for operands of VPWidenRecipe, as discussed in D76992.
Subsequently additional information can be added to the recipe rather
than computing it during the execute step.
Reviewers: rengolin, Ayal, gilr, hsaito
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D77467