For more powerful folding with operands that are not necessarily
all-constant, use InstSimplifyFolder instead of TargetFolder in
tryToConstantFold, and rename the function tryToFoldLiveIns.
Update initial construction to connect the Plan's entry to the scalar
preheader during initial construction. This moves a small part of the
skeleton creation out of ILV and will also enable replacing
VPInstruction::ResumePhi with regular VPPhi recipes.
Resume phis need 2 incoming values to start with, the second being the
bypass value from the scalar ph (and used to replicate the incoming
value for other bypass blocks). Adding the extra edge ensures we
incoming values for resume phis match the incoming blocks.
PR: https://github.com/llvm/llvm-project/pull/140132
This patch moves the logic to manage IR flags to a separate VPIRFlags
class. For now, VPRecipeWithIRFlags is the only class that inherits
VPIRFlags. The new class allows for simpler passing of flags when
constructing recipes, simplifying the constructors for various recipes
(VPInstruction in particular, which now just has 2 constructors, one
taking an extra VPIRFlags argument.
This mirrors the approach taken for VPIRMetadata and makes it easier to
extend in the future. The patch also adds a unified flagsValidForOpcode
to check if the flags in a VPIRFlags match the provided opcode.
PR: https://github.com/llvm/llvm-project/pull/140621
Building on top of https://github.com/llvm/llvm-project/pull/114305,
replace VPRegionBlocks with explicit CFG before executing.
This brings the final VPlan closer to the IR that is generated and
helps to simplify codegen.
It will also enable further simplifications of phi handling during
execution and transformations that do not have to preserve the
canonical IV required by loop regions. This for example could include
replacing the canonical IV with an EVL based phi while completely
removing the original canonical IV.
PR: https://github.com/llvm/llvm-project/pull/117506
Add a new convertToUniformRecipes transform which uses VPlan-based
uniformity analysis to determine if wide recipes and replicate recipes
can be converted to uniform recipes.
There are a few places where we ad-hoc convert recipes to uniform
recipes, which this transform will eventually replace. There are a few
more generalizations required to do so which I plan to do as follow-ups.
By converting the recipes to uniform recipes, we effectively materialize
the information from the VPlan-based analysis.
Note that there is one regression at the moment in SystemZ/pr47665.ll
due to trivial constant folding opportunities in the input IR. This will
be fixed by VPlan-based constant folding
(https://github.com/llvm/llvm-project/pull/125365/)
PR: https://github.com/llvm/llvm-project/pull/139150
This patch introduce two new recipes.
* VPExtendedReductionRecipe
- cast + reduction.
* VPMulAccumulateReductionRecipe
- (cast) + mul + reduction.
This patch also implements the transformation that match following
patterns via vplan and converts to abstract recipes for better cost
estimation.
* VPExtendedReduction
- reduce(cast(...))
* VPMulAccumulateReductionRecipe
- reduce.add(mul(...))
- reduce.add(mul(ext(...), ext(...))
- reduce.add(ext(mul(ext(...), ext(...))))
The converted abstract recipes will be lower to the concrete recipes
(widen-cast + widen-mul + reduction) just before recipe execution.
Note that this patch still relies on legacy cost model the calculate the
cost for these patters.
Will enable vplan-based cost decision in #113903.
Split from #113903.
Move early-exit handling up front to original VPlan construction, before
introducing early exits.
This builds on https://github.com/llvm/llvm-project/pull/137709, which
adds exiting edges to the original VPlan, instead of adding exit blocks
later.
This retains the exit conditions early, and means we can handle early
exits before forming regions, without the reliance on VPRecipeBuilder.
Once we retain all exits initially, handling early exits before region
construction ensures the regions are valid; otherwise we would leave
edges exiting the region from elsewhere than the latch.
Removing the reliance on VPRecipeBuilder removes the dependence on
mapping IR BBs to VPBBs and unblocks predication as VPlan transform:
https://github.com/llvm/llvm-project/pull/128420.
Depends on https://github.com/llvm/llvm-project/pull/137709 (included in
PR).
PR: https://github.com/llvm/llvm-project/pull/138393
tryToWiden attempts to replace an Instruction with a Constant from SCEV,
but forgets to erase the Instruction from the MinBWs map, leading to an
assert in VPlanTransforms::truncateToMinimalBitwidths. Going forward,
the assertion in truncateToMinimalBitwidths is unmaintainable, as LV
could simplify the expression at any point: fix the bug by stripping the
unmaintable assertion.
Fixes#125278.
Split off from #118638, this adds VPInstruction::StepVector, which
generates integer step vectors (0,1,2,...,VF). This is a step towards
eventually modelling all the separate parts of
VPWidenIntOrFpInductionRecipe in VPlan.
This is then used by VPWidenIntOrFpInductionRecipe, where we materialize
it just before unrolling so the operands stay in a fixed position.
The need for a separate operand in VPWidenIntOrFpInductionRecipe, as
well as the need to update it in
optimizeVectorInductionWidthForTCAndVFUF, should be removed with #118638
when everything is expanded in convertToConcreteRecipes.
There is a bug in the computation and handling of MinBWs in the case of
VPWidenIntrinsicRecipe: a crash is observed in
VPlanTransforms::truncateToMinimalBitwidths due to a mismatch between
the number of recipes processed and the number of entries in MinBWs. Fix
handling of calls in llvm::computeMinimumValueSizes, and handle
VPWidenIntrinsicRecipe in truncateToMinimalBitwidths, fixing the bug.
Fixes#87407.
This reverts commit 8dd160f4767f971572eac065c8650d9202ff5bf9.
The recommit contains an adjustment to planContainsAdditionalSimplifications,
which considers changes to the original predicate for compares.
Original commit message:
Add simplification to fold negation into a compare, if the negation is
the only user of the compare. This removes a number of redundant
negations.
Alive2 Proofs for FPCMP test changes: https://alive2.llvm.org/ce/z/WGDz9U
PR: https://github.com/llvm/llvm-project/pull/129430
Simplify initial VPlan construction by not creating a separate
vector.latch block, which isn't needed and will get folded away later.
This has been suggested as independent clean-up multiple times.
ExtractFromEnd only has 2 uses, extracting the last and penultimate
elements. Replace it with 2 separate opcodes, removing the need to
materialize and handle a constant argument.
PR: https://github.com/llvm/llvm-project/pull/137030
Add incoming exit phi operands during the initial VPlan construction.
This ensures all users are added to the initial VPlan and is also needed
in preparation to retaining exiting edges during initial construction.
PR: https://github.com/llvm/llvm-project/pull/136455
Extend sinking logic to duplicate scalar steps recipe if it enables
sinking, that is if all users in a destination block require all lanes.
This should be the last step before removing legacy sinkScalarOperands.
PR: https://github.com/llvm/llvm-project/pull/136021
This patch check if the plan contains scalar VF by VFRange instead of
Plan.
This patch also clamp the range to contains either only scalar or only
vector VFs to prevent mis-compile.
Split from #113903.
With EVL tail folding an AnyOf reduction will emit an i1 vp.merge like
vp.merge true, (or phi, cond), phi, evl
We can remove the or and optimise this to
vp.merge cond, true, phi, evl
Which makes it slightly easier to pattern match in #134898.
This also adds a pattern matcher for calls to help match this.
Blended AnyOf reductions will use an and instead of an or, which we may
also be able to simplify in a later patch.
This patch adds a WideIVStep opcode that can be used to create a vector
with the steps to increment a wide induction. The opcode has 2 operands
* the vector step
* the scale of the vector step
The opcode is later converted into a sequence of recipes that convert
the scale and step to the target type, if needed, and then multiply
vector step by scale.
This simplifies code that needs to materialize step vectors, e.g.
replacing wide IVs as follow up to
https://github.com/llvm/llvm-project/pull/108378 with an increment of
the wide IV step.
PR: https://github.com/llvm/llvm-project/pull/119284
Add additional OR simplification to fix a divergence between legacy and
VPlan-based cost model.
This adds a new m_AllOnes matcher by generalizing specific_intval to
int_pred_ty, which takes a predicate to check to support matching both
specific APInts and other APInt predices, like isAllOnes.
Fixes https://github.com/llvm/llvm-project/issues/131359.
This is split off from #133977
VPBlendRecipe normalisation is sensitive to the number of users a mask
has, so should probably be run after the masks are simplified as much as
possible.
Note this could be run after removeDeadRecipes but this causes test
diffs, some regressions, so this is left to a later patch.
Add an initial CFG simplification transform, which removes the dead
edges for blocks terminated with BranchOnCond true.
At the moment, this removes the edge between middle block and scalar
preheader when folding the tail.
PR: https://github.com/llvm/llvm-project/pull/106748
As noted in 1a9358c090d0507be21c5e9b2d97a23ef1de8ab0, some
simplifications can produce a redundant select where the true and false
operands are the same, which this patch removes.
The is_fpclass test was changed so the condition wasn't made dead.
If a recipe was predicated and tail folded at the same time, it will
have a mask like
EMIT vp<%header-mask> = icmp ule canonical-iv, backedge-tc
EMIT vp<%mask> = logical-and vp<%header-mask>, vp<%pred-mask>
When converting to an EVL recipe, if the mask isn't exactly just the
header-mask we copy the whole logical-and.
We can remove this redundant logical-and (because it's now covered by
EVL) and just use vp<%pred-mask> instead.
This lets us remove the widened canonical IV in more places.
This copies over the implementation of m_Deferred which allows matching
values that were bound in the pattern, and uses it for the (X && Y) ||
(X && !Y) -> X simplifcation.
Remove the UF = 1 restriction introduced by 577631f0a5 building on top
of 783a846507683, which allows updating all relevant users of the VF,
VPScalarIVSteps in particular.
This restores the full functionality of
https://github.com/llvm/llvm-project/pull/106441.
Similarly to other recipes, update VPScalarIVStepsRecipe to also take
the runtime VF as argument. This removes some unnecessary runtime VF
computations for scalable vectors. It will also allow dropping the
UF == 1 restriction for narrowing interleave groups required in
577631f0a528.
Optimize the IR generated for a VPWidenIntOrFpInductionRecipe to use the
narrowest type necessary, when the trip-count of a loop is known to be
constant and the only use of the recipe is the condition used by the
vector loop's backedge branch.
Add a new VPIRPhi subclass of VPIRInstruction, that purely serves as an
overlay, to provide more convenient checking (via directly doing
isa/dyn_cast/cast) and specialied execute/print implementations.
Both VPIRInstruction and VPIRPhi share the same VPDefID, and are
differentiated by the backing IR instruction.
This pattern could alos be used to provide more specialized interfaces
for some VPInstructions ocpodes, without introducing new, completely
spearate recipes. An example would be modeling VPWidenPHIRecipe &
VPScalarPHIRecip using VPInstructions opcodes and providing an interface
to retrieve incoming blocks and values through a VPInstruction subclass
similar to VPIRPhi.
PR: https://github.com/llvm/llvm-project/pull/129387
This is the second of two PRs that attempts to improve the IR
generated in the exit blocks of vectorised loops with uncountable
early exits. It follows on from PR #128880. In this PR I am
improving the generated code for users of induction variables in
early exit blocks.
This required using a newly add VPInstruction called
FirstActiveLane, which calculates the index of the first active
predicate in the mask operand.
I have added a new function optimizeEarlyExitInductionUser that
is called from optimizeInductionExitUsers when handling users in
early exit blocks.
This reverts commit ff3e2ba9eb94217f3ad3525dc18b0c7b684e0abf.
The recommmitted version limits to transform to cases where no
interleaving is taking place, to avoid a mis-compile when interleaving.
Original commit message:
This patch adds a new narrowInterleaveGroups transfrom, which tries
convert a plan with interleave groups with VF elements to a plan that
instead replaces the interleave groups with wide loads and stores
processing VF elements.
This effectively is a very simple form of loop-aware SLP, where we
use interleave groups to identify candidates.
This initial version is quite restricted and hopefully serves as a
starting point for how to best model those kinds of transforms.
Depends on https://github.com/llvm/llvm-project/pull/106431.
Fixes https://github.com/llvm/llvm-project/issues/82936.
PR: https://github.com/llvm/llvm-project/pull/106441
After unrolling, there may be additional simplifications that can be
applied. One example is removing SCALAR-STEPS for the first part where
only the first lane is demanded.
This removes redundant adds of 0 from a large number of tests (~200),
many which I am still working on updating.
In preparation for removing redundant WideIV steps added in
https://github.com/llvm/llvm-project/pull/119284.
PR: https://github.com/llvm/llvm-project/pull/123655