The default and pre-link pipeline builders currently require you to
call a separate method for optimization level O0, even though they
have perfectly well-defined O0 optimization pipelines.
Accept O0 optimization level and call buildO0DefaultPipeline()
internally, so all consumers don't need to repeat this.
Differential Revision: https://reviews.llvm.org/D146200
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This change make sure that ExecutionEngine's pass pipeline is identical to one
used by clang. Previously, SLPVectorization was not enabled which caused
differences in code...
...generation.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D137248
Currently, there've been a lot of warnings while building MLIR.
This change fixes the warnings listed below.
.../SparseTensorUtils.cpp: In instantiation of ‘...::openSparseTensorCOO(...) [with ...]’:
.../SparseTensorUtils.cpp:1672:3: required from here
.../SparseTensorUtils.cpp:87:21: warning: format ‘%d’ expects argument of type ‘int’, but argument 3 has type ‘PrimaryType’ [-Wformat=]
.../OptUtils.cpp:36:5: warning: this statement may fall through [-Wimplicit-fallthrough=]
.../AffineOps.cpp:1741:32: warning: suggest parentheses around ‘&&’ within ‘||’ [-Wparentheses]
Reviewed By: aartbik, wrengr, aeubanks
Differential Revision: https://reviews.llvm.org/D128993
Use the new pass manager.
This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.
No need to initialize passes outside of constructing the PassBuilder with the new pass manager.
Reland: Fixed custom calls to `-lower-matrix-intrinsics` in integration tests by replacing them with `-O0 -enable-matrix`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123425
Use the new pass manager.
This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.
No need to initialize passes outside of constructing the PassBuilder with the new pass manager.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123425
This reverts commit 4986d5eaff359081a867def1c6a2e1147dbb2ad6 with
proper patches to CMakeLists.txt:
- Add MLIRAsync as a dependency to MLIRAsyncToLLVM
- Add Coroutines as a dependency to MLIRExecutionEngine
This reverts commit a8b0ae3bddee311cbc97801089a95702f32773f8
and commit f8fcff5a9d7ee948add3f28382d4ced5710edaaf.
The build with SHARED_LIBRARY=ON is broken.
Lower from Async dialect to LLVM by converting async regions attached to `async.execute` operations into LLVM coroutines (https://llvm.org/docs/Coroutines.html):
1. Outline all async regions to functions
2. Add LLVM coro intrinsics to mark coroutine begin/end
3. Use MLIR conversion framework to convert all remaining async types and ops to LLVM + Async runtime function calls
All `async.await` operations inside async regions converted to coroutine suspension points. Await operation outside of a coroutine converted to the blocking wait operations.
Implement simple runtime to support concurrent execution of coroutines.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D89292
Many LLVM transformations benefits from knowing the targets. This enables optimizations,
especially in a JIT context when the target is (generally) well-known.
Closestensorflow/mlir#49
PiperOrigin-RevId: 261840617
Original implementation of OutUtils provided two different LLVM IR module
transformers to be used with the MLIR ExecutionEngine: OptimizingTransformer
parameterized by the optimization levels (similar to -O3 flags) and
LLVMPassesTransformer parameterized by the string formatted similarly to
command line options of LLVM's "opt" tool without support for -O* flags.
Introduce such support by declaring the flags inside the parser and by
populating the pass managers similarly to what "opt" does. Remove the
additional flags from mlir-cpu-runner as they can now be wrapped into
`-llvm-opts` together with other LLVM-related flags.
PiperOrigin-RevId: 236107292
A recent change introduced a possibility to run LLVM IR transformation during
JIT-compilation in the ExecutionEngine. Provide helper functions that
construct IR transformers given either clang-style optimization levels or a
list passes to run. The latter wraps the LLVM command line option parser to
parse strings rather than actual command line arguments. As a result, we can
run either of
mlir-cpu-runner -O3 input.mlir
mlir-cpu-runner -some-mlir-pass -llvm-opts="-llvm-pass -other-llvm-pass"
to combine different transformations. The transformer builder functions are
provided as a separate library that depends on LLVM pass libraries unlike the
main execution engine library. The library can be used for integrating MLIR
execution engine into external frameworks.
PiperOrigin-RevId: 234173493