There's probably a lot more like this (see also comments in D33338 about responsibility),
but I suspect we don't usually get a visible manifestation.
Given the recent interest in improving InstCombine efficiency, another potential micro-opt
that could be repeated several times in this function: morph the existing icmp pred/operands
instead of creating a new instruction.
llvm-svn: 303860
The swapped operands in the first test is a manifestation of an
inefficiency for vectors that doesn't exist for scalars because
the IRBuilder checks for an all-ones mask for scalars, but not
vectors.
llvm-svn: 303818
This continues the changes started when computeSignBit was replaced with this new version of computeKnowBits.
Differential Revision: https://reviews.llvm.org/D33431
llvm-svn: 303773
Summary:
Fix naming conventions and const correctness.
This completes the changes made in rL303029.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33377
llvm-svn: 303529
The missing optimization for xor-of-icmps still needs to be added, but by
being more efficient (not generating unnecessary logic ops with constants)
we avoid the bug.
See discussion in post-commit comments:
https://reviews.llvm.org/D32143
llvm-svn: 303312
As noted in the post-commit comments in D32143, we should be
catching the constant operand cases sooner to be more efficient
and less likely to expose a missing fold.
llvm-svn: 303309
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
llvm-svn: 301432
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
We currently only support folding a subtract into a select but not a PHI. This fixes that.
I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects.
Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards.
Differential Revision: https://reviews.llvm.org/D31686
llvm-svn: 300363
Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
llvm-svn: 300252
The first thing it did was get the User for the Use to get the instruction back. This requires looking through the Uses for the User using the waymarking walk. That's pretty fast, but its probably still better to just pass the Instruction we already had.
llvm-svn: 298772
Summary:
When InstCombine is optimizing certain select-cmp-br patterns
it replaces the result of the select in uses outside of the
basic block containing the select. This is only legal if the
path from the select to the outside use is disjoint from all
other paths out from the originating basic block.
The problem found was that InstCombiner::replacedSelectWithOperand
did not consider the case when both edges out from the br pointed
to the same label. In that case the paths aren't disjoint and the
transformation is illegal. This patch avoids the faulty rewrites
by verifying that there is a single flow to the successor where
we want to replace uses.
Reviewers: llvm-commits, spatel, majnemer
Differential Revision: https://reviews.llvm.org/D30455
llvm-svn: 296752
transformToIndexedCompare
If they don't have the same type, the size of the constant
index would need to be adjusted (and this wouldn't be always
possible).
Alternatively we could try the analysis with the initial
RHS value, which would guarantee that the two sides have
the same type. However it is unlikely that in practice this
would pass our transformation requirements.
Fixes PR31808 (https://llvm.org/bugs/show_bug.cgi?id=31808).
llvm-svn: 293629
This is a minimal patch to avoid the infinite loop in:
https://llvm.org/bugs/show_bug.cgi?id=31751
But the general problem is bigger: we're not canonicalizing all of the min/max forms reported
by value tracking's matchSelectPattern(), and we don't define min/max consistently. Some code
uses matchSelectPattern(), other code uses matchers like m_Umax, and others have their own
inline definitions which may be subtly different from any of the above.
The reason that the test cases in this patch need a cast op to trigger is because we don't
(yet) canonicalize all min/max forms based on matchSelectPattern() in
canonicalizeMinMaxWithConstant(), but we do make min/max+cast transforms based on
matchSelectPattern() in visitSelectInst().
The location of the icmp transforms that trigger the inf-loop seems arbitrary at best, so
I'm moving those behind the min/max fence in visitICmpInst() as the quick fix.
llvm-svn: 293345
Allows LLVM to optimize sequences like the following:
%add = add nuw i32 %x, 1
%cmp = icmp ugt i32 %add, %y
Into:
%cmp = icmp uge i32 %x, %y
Previously, only signed comparisons were being handled.
Decrements could also be handled, but 'sub nuw %x, 1' is currently canonicalized to
'add %x, -1' in InstCombineAddSub, losing the nuw flag. Removing that canonicalization
seems like it might have far-reaching ramifications so I kept this simple for now.
Patch by Matti Niemenmaa!
Differential Revision: https://reviews.llvm.org/D24700
llvm-svn: 291975
Min/max canonicalization (r287585) exposes the fact that we're missing combines for min/max patterns.
This patch won't solve the example that was attached to that thread, so something else still needs fixing.
The line between InstCombine and InstSimplify gets blurry here because sometimes the icmp instruction that
we want to fold to already exists, but sometimes it's the swapped form of what we want.
Corresponding changes for smax/umin/umax to follow.
Differential Revision: https://reviews.llvm.org/D27531
llvm-svn: 289855
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
These 2 helper functions were already using APInt internally, so just
change the API and caller to allow folds for splats. The scalar
regression tests look quite thorough, so I just added a couple of
tests to prove that vectors are handled too.
These folds should be grouped with the other cmp+shift folds though.
That can be an NFC follow-up.
llvm-svn: 281663