...and "[lldb/Interpreter] Introduce `ScriptedStopHook{,Python}Interface` & make use of it (#105449)"
This reverts commit 76b827bb4d5b4cc4d3229c4c6de2529e8b156810, and commit 1e131ddfa8f1d7b18c85c6e4079458be8b419421
because the first commit caused the test command-stop-hook-output.test to fail.
This patch introduces new `ScriptedStopHook{,Python}Interface` classes
that make use of the Scripted Interface infrastructure and makes use of
it in `StopHookScripted`.
It also relax the requirement on the number of argument for initializing
scripting extension if the size of the interface parameter pack contains
1 less element than the extension maximum number of positional arguments
for this initializer.
This addresses the cases where the embedded interpreter session
dictionary is passed to the extension initializer which is not used most
of the time.
---------
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Compilers and language runtimes often use helper functions that are
fundamentally uninteresting when debugging anything but the
compiler/runtime itself. This patch introduces a user-extensible
mechanism that allows for these frames to be hidden from backtraces and
automatically skipped over when navigating the stack with `up` and
`down`.
This does not affect the numbering of frames, so `f <N>` will still
provide access to the hidden frames. The `bt` output will also print a
hint that frames have been hidden.
My primary motivation for this feature is to hide thunks in the Swift
programming language, but I'm including an example recognizer for
`std::function::operator()` that I wished for myself many times while
debugging LLDB.
rdar://126629381
Example output. (Yes, my proof-of-concept recognizer could hide even
more frames if we had a method that returned the function name without
the return type or I used something that isn't based off regex, but it's
really only meant as an example).
before:
```
(lldb) thread backtrace --filtered=false
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #3: 0x0000000100003968 a.out`std::__1::__function::__alloc_func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()[abi:se200000](this=0x000000016fdff280, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:171:12
frame #4: 0x00000001000026bc a.out`std::__1::__function::__func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()(this=0x000000016fdff278, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:313:10
frame #5: 0x0000000100003c38 a.out`std::__1::__function::__value_func<int (int, int)>::operator()[abi:se200000](this=0x000000016fdff278, __args=0x000000016fdff224, __args=0x000000016fdff220) const at function.h:430:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
(lldb)
```
after
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
Note: Some frames were hidden by frame recognizers
```
This patch tries to fix the following build failure on windows:
https://lab.llvm.org/buildbot/#/builders/141/builds/1083
This started happening following 2914a4b88837, and it seems to be caused
by some special `#include` ordering for the lldb-python header on Windows.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Among other things, returning an empty string as the repeat command
disables auto-repeat, which can be useful for state-changing commands.
There's one remaining refinement to this setup, which is that for parsed
script commands, it should be possible to change an option value, or add
a new option value that wasn't originally specified, then ask lldb "make
this back into a command string". That would make doing fancy things
with repeat commands easier.
That capability isn't present in the lldb_private side either, however.
So that's for a next iteration.
I haven't added this to the docs on adding commands yet. I wanted to
make sure this was an acceptable approach before I spend the time to do
that.
This patch makes ScriptedThreadPlan conforming to the ScriptedInterface
& ScriptedPythonInterface facilities by introducing 2
ScriptedThreadPlanInterface & ScriptedThreadPlanPythonInterface classes.
This allows us to get rid of every ScriptedThreadPlan-specific SWIG
method and re-use the same affordances as other scripting offordances,
like Scripted{Process,Thread,Platform} & OperatingSystem.
To do so, this adds new transformer methods for `ThreadPlan`, `Stream` &
`Event`, to allow the bijection between C++ objects and their python
counterparts.
This just re-lands #70392 after fixing test failures.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch makes ScriptedThreadPlan conforming to the ScriptedInterface
& ScriptedPythonInterface facilities by introducing 2
ScriptedThreadPlanInterface & ScriptedThreadPlanPythonInterface classes.
This allows us to get rid of every ScriptedThreadPlan-specific SWIG
method and re-use the same affordances as other scripting offordances,
like Scripted{Process,Thread,Platform} & OperatingSystem.
To do so, this adds new transformer methods for `ThreadPlan`, `Stream` &
`Event`, to allow the bijection between C++ objects and their python
counterparts.
This just re-lands #70392 after fixing test failures.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This allows you to specify options and arguments and their definitions
and then have lldb handle the completions, help, etc. in the same way
that lldb does for its parsed commands internally.
This feature has some design considerations as well as the code, so I've
also set up an RFC, but I did this one first and will put the RFC
address in here once I've pushed it...
Note, the lldb "ParsedCommand interface" doesn't actually do all the
work that it should. For instance, saying the type of an option that has
a completer doesn't automatically hook up the completer, and ditto for
argument values. We also do almost no work to verify that the arguments
match their definition, or do auto-completion for them. This patch
allows you to make a command that's bug-for-bug compatible with built-in
ones, but I didn't want to stall it on getting the auto-command checking
to work all the way correctly.
As an overall design note, my primary goal here was to make an interface
that worked well in the script language. For that I needed, for
instance, to have a property-based way to get all the option values that
were specified. It was much more convenient to do that by making a
fairly bare-bones C interface to define the options and arguments of a
command, and set their values, and then wrap that in a Python class
(installed along with the other bits of the lldb python module) which
you can then derive from to make your new command. This approach will
also make it easier to experiment.
See the file test_commands.py in the test case for examples of how this
works.
Temporarily revert to unblock the CI bots, this is breaking the -DLLVM_ENABLE_MODULES=On
modules style build. I've notified Ismail.
This reverts commit 888501bc631c4f6d373b4081ff6c504a1ce4a682.
This patch makes ScriptedThreadPlan conforming to the ScriptedInterface
& ScriptedPythonInterface facilities by introducing 2
ScriptedThreadPlanInterface & ScriptedThreadPlanPythonInterface classes.
This allows us to get rid of every ScriptedThreadPlan-specific SWIG
method and re-use the same affordances as other scripting offordances,
like Scripted{Process,Thread,Platform} & OperatingSystem.
To do so, this adds new transformer methods for `ThreadPlan`, `Stream` &
`Event`, to allow the bijection between C++ objects and their python
counterparts.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch makes ScriptedThreadPlan conforming to the ScriptedInterface
& ScriptedPythonInterface facilities by introducing 2
ScriptedThreadPlanInterface & ScriptedThreadPlanPythonInterface classes.
This allows us to get rid of every ScriptedThreadPlan-specific SWIG
method and re-use the same affordances as other scripting offordances,
like Scripted{Process,Thread,Platform} & OperatingSystem.
To do so, this adds new transformer methods for `ThreadPlan`, `Stream` &
`Event`, to allow the bijection between C++ objects and their python
counterparts.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch aims to consolidate the OperatingSystem scripting affordance
by introducing a stable interface that conforms to the
Scripted{,Python}Interface.
This unify the way we call into python methods from lldb while
also improving its capabilities by allowing us to pass lldb_private
objects are arguments.
Differential Revision: https://reviews.llvm.org/D159314
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
As we're consolidating and streamlining the various scripting
affordances of lldb, we keep creating new interface files.
This patch groups all the current interface files into a separate sub
directory called `Interfaces` both in the core `Interpreter` directory
and the `ScriptInterpreter` plugin directory.
Differential Revision: https://reviews.llvm.org/D158833
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch adds the ability to pass native types from the script
interpreter to methods that use a {SB,}StructuredData argument.
To do so, this patch changes the `ScriptedObject` struture that holds
the pointer to the script object as well as the originating script
interpreter language. It also exposes that to the SB API via a new class
called `SBScriptObject`.
This structure allows the debugger to parse the script object and
convert it to a StructuredData object. If the type is not compatible
with the StructuredData types, we will store its pointer in a
`StructuredData::Generic` object.
This patch also adds some SWIG typemaps that checks the input argument to
ensure it's either an SBStructuredData object, in which case it just
passes it throught, or a python object that is NOT another SB type, to
provide some guardrails for the user.
rdar://111467140
Differential Revision: https://reviews.llvm.org/D155161
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch should fix some data races when a python script (i.e. a
Scripted Process) has a nested call to another python script (i.e. a
OperatingSystem Plugin), which can cause concurrent writes to the python
lock count.
This patch also fixes a data race happening when resetting the operating
system unique pointer.
To address these issues, both accesses is guarded by a mutex.
rdar://109413039
Differential Revision: https://reviews.llvm.org/D154271
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
None of these need to be in the ConstString StringPool. For the most
part they are constant strings and do not require fast comparisons.
I did change IOHandlerDelegateMultiline slightly -- specifically, the
`m_end_line` member always has a `\n` at the end of it now. This was so
that `IOHandlerGetControlSequence` can always return a StringRef. This
did require a slight change to `IOHandlerIsInputComplete` where we must
drop the newline before comparing it against the input parameter.
Differential Revision: https://reviews.llvm.org/D151597
In order to run a {break,watch}point command, lldb can resolve to the
script interpreter to run an arbitrary piece of code or call into a
user-provided function. To do so, we will generate a wrapping function,
where we first copy lldb's internal dictionary keys into the
interpreter's global dictionary, copied inline the user code before
resetting the global dictionary to its previous state.
However, {break,watch}point commands can optionally return a value that
would tell lldb whether we should stop or not. This feature was
only implemented for breakpoint commands and since we inlined the user
code directly into the wrapping function, introducing an early return,
that caused lldb to let the interpreter global dictionary tinted with the
internal dictionary keys.
This patch fixes that issue while also adding the stopping behaviour to
watchpoint commands.
To do so, this patch refactors the {break,watch}point command creation
method, to let the lldb wrapper function generator know if the user code is
a function call or a arbitrary expression.
Then the wrapper generator, if the user input was a function call, the
wrapper function will call the user function and save the return value into
a variable. If the user input was an arbitrary expression, the wrapper will
inline it into a nested function, call the nested function and save the
return value into the same variable. After resetting the interpreter global
dictionary to its previous state, the generated wrapper function will return
the varible containing the return value.
rdar://105461140
Differential Revision: https://reviews.llvm.org/D144688
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch should address a bug when a user have multiple scripted
processes in the same debugging session.
In order for the scripted process plugin to be able to call into the
scripted object instance methods to fetch the necessary data to
reconstruct its state, the scripted process plugin calls into a
scripted process interface, that has a reference to the created script
object instance.
However, prior to this patch, we only had a single instance of the
scripted process interface, living the script interpreter. So every time
a new scripted process plugin was created, it would overwrite the script
object instance that was held by the single scripted process interface
in the script interpreter.
That would cause all the method calls made to the scripted process
interface to be dispatched by the last instanciated script object
instance, which is wrong.
In order to prevent that, this patch moves the scripted process
interface reference to be help by the scripted process plugin itself.
rdar://104882562
Differential Revision: https://reviews.llvm.org/D143308
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new matching method for data formatters, in addition
to the existing exact typename and regex-based matching. The new method
allows users to specify the name of a Python callback function that
takes a `SBType` object and decides whether the type is a match or not.
Here is an overview of the changes performed:
- Add a new `eFormatterMatchCallback` matching type, and logic to handle
it in `TypeMatcher` and `SBTypeNameSpecifier`.
- Extend `FormattersMatchCandidate` instances with a pointer to the
current `ScriptInterpreter` and the `TypeImpl` corresponding to the
candidate type, so we can run registered callbacks and pass the type
to them. All matcher search functions now receive a
`FormattersMatchCandidate` instead of a type name.
- Add some glue code to ScriptInterpreterPython and the SWIG bindings to
allow calling a formatter matching callback. Most of this code is
modeled after the equivalent code for watchpoint callback functions.
- Add an API test for the new callback-based matching feature.
For more context, please check the RFC thread where this feature was
originally discussed:
https://discourse.llvm.org/t/rfc-python-callback-for-data-formatters-type-matching/64204/11
Differential Revision: https://reviews.llvm.org/D135648
We got a few crash reports that showed LLDB initializing Python on two
separate threads. Make sure Python is initialized exactly once.
rdar://87287005
Differential revision: https://reviews.llvm.org/D117601
StructuredDataImpl ownership semantics is unclear at best. Various
structures were holding a non-owning pointer to it, with a comment that
the object is owned somewhere else. From what I was able to gather that
"somewhere else" was the SBStructuredData object, but I am not sure that
all created object eventually made its way there. (It wouldn't matter
even if they did, as we are leaking most of our SBStructuredData
objects.)
Since StructuredDataImpl is just a collection of two (shared) pointers,
there's really no point in elaborate lifetime management, so this patch
replaces all StructuredDataImpl pointers with actual objects or
unique_ptrs to it. This makes it much easier to resolve SBStructuredData
leaks in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D114791
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
Refactor TerminalState to make the code simpler. Move 'struct termios'
to a PImpl-style subclass. Add an RAII interface to automatically store
and restore the state.
Differential revision: https://reviews.llvm.org/D110721
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
Add the ability to silence command script import. The motivation for
this change is being able to add command script import -s
lldb.macosx.crashlog to your ~/.lldbinit without it printing the
following message at the beginning of every debug session.
"malloc_info", "ptr_refs", "cstr_refs", "find_variable", and
"objc_refs" commands have been installed, use the "--help" options on
these commands for detailed help.
In addition to forwarding the silent option to LoadScriptingModule, this
also changes ScriptInterpreterPythonImpl::ExecuteOneLineWithReturn and
ScriptInterpreterPythonImpl::ExecuteMultipleLines to honor the enable IO
option in ExecuteScriptOptions, which until now was ignored.
Note that IO is only enabled (or disabled) at the start of a session,
and for this particular use case, that's done when taking the Python
lock in LoadScriptingModule, which means that the changes to these two
functions are not strictly necessary, but (IMO) desirable nonetheless.
Differential revision: https://reviews.llvm.org/D105327
This is an NFC cleanup.
Many of the API's that returned BreakpointOptions always returned valid ones.
Internally the BreakpointLocations usually have null BreakpointOptions, since they
use their owner's options until an option is set specifically on the location.
So the original code used pointers & unique_ptr everywhere for consistency.
But that made the code hard to reason about from the outside.
This patch changes the code so that everywhere an API is guaranteed to
return a non-null BreakpointOption, it returns it as a reference to make
that clear.
It also changes the Breakpoint to hold a BreakpointOption
member where it previously had a UP. Since we were always filling the UP
in the Breakpoint constructor, having the UP wasn't helping anything.
Differential Revision: https://reviews.llvm.org/D104162
This patch adds a ScriptedProcess interface to the ScriptInterpreter and
more specifically, to the ScriptInterpreterPython.
This interface will be used in the C++ `ScriptProcess` Process Plugin to
call the script methods.
At the moment, not all methods are implemented, they will upstreamed in
upcoming patches.
This patch also adds helper methods to the ScriptInterpreter to
convert `SBAPI` Types (SBData & SBError) to `lldb_private` types
(DataExtractor & Status).
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95711
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a ScriptedProcess interface to the ScriptInterpreter and
more specifically, to the ScriptInterpreterPython.
This interface will be used in the C++ `ScriptProcess` Process Plugin to
call the script methods.
At the moment, not all methods are implemented, they will upstreamed in
upcoming patches.
This patch also adds helper methods to the ScriptInterpreter to
convert `SBAPI` Types (SBData & SBError) to `lldb_private` types
(DataExtractor & Status).
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95711
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Make it possible to use a relative path in command script import to the
location of the file being sourced. This allows the user to put Python
scripts next to LLDB command files and importing them without having to
specify an absolute path.
To enable this behavior pass `-c` to `command script import`. The
argument can only be used when sourcing the command from a file.
rdar://68310384
Differential revision: https://reviews.llvm.org/D89334
This reverts commit f775fe59640a2e837ad059a8f40e26989d4f9831.
I fixed a return type error in the original patch that was causing a test failure.
Also added a REQUIRES: python to the shell test so we'll skip this for
people who build lldb w/o Python.
Also added another test for the error printing.
The `-r` option for `command script import` is there for legacy
compatibility, however the can_reload flag is always set to true. This
patch removes the flag and any code that relies on it being false.
As suggested by Pavel in a code review:
> Can we replace this (and maybe python too, while at it) with a
> Host/Config.h entry? A global definition means that one has to
> recompile everything when these change in any way, whereas in
> practice only a handful of files need this..
Differential revision: https://reviews.llvm.org/D71280
Summary:
Move breakpoints from the old, bad ArgInfo::count to the new, better
ArgInfo::max_positional_args. Soon ArgInfo::count will be no more.
It looks like this functionality is already well tested by
`TestBreakpointCommandsFromPython.py`, so there's no need to write
additional tests for it.
Reviewers: labath, jingham, JDevlieghere
Reviewed By: labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D69468
For example, it is pretty easy to write a breakpoint command that implements "stop when my caller is Foo", and
it is pretty easy to write a breakpoint command that implements "stop when my caller is Bar". But there's no
way to write a generic "stop when my caller is..." function, and then specify the caller when you add the
command to a breakpoint.
With this patch, you can pass this data in a SBStructuredData dictionary. That will get stored in
the PythonCommandBaton for the breakpoint, and passed to the implementation function (if it has the right
signature) when the breakpoint is hit. Then in lldb, you can say:
(lldb) break com add -F caller_is -k caller_name -v Foo
More generally this will allow us to write reusable Python breakpoint commands.
Differential Revision: https://reviews.llvm.org/D68671