This removes the last use of OperandValueKind from the client side API, and (once this is fully plumbed through TTI implementation) allow use of the same properties in store costing as arithmetic costing.
This completes the client side transition to the OperandValueInfo version of this routine. Backend TTI implementations still use the prior versions for now.
OperandValueKind and OperandValueProperties both provide facts about the operands of an instruction for purposes of cost modeling. We've discussed merging them several times; before I plumb through more flags, let's go ahead and do so.
This change only adds the client side interface for getArithmeticInstrCost and makes a couple of minor changes in client code to prove that it works. Target TTI implementations still use the split flags. I'm deliberately splitting what could be one big change into a series of smaller ones so that I can lean on the compiler to catch errors along the way.
Defaults to TCK_RecipThroughput - as most explicit calls were assuming TCK_RecipThroughput (vectorizers) or was just doing a before-vs-after comparison (vectorcombiner). Calls via getInstructionCost were just dropping the CostKind, so again there should be no change at this time (as getShuffleCost and its expansions don't use CostKind yet) - but it will make it easier for us to better account for size/latency shuffle costs in inline/unroll passes in the future.
Differential Revision: https://reviews.llvm.org/D132287
SLP vectorizer tries to find the reductions starting the operands of the
instructions with no-users/void returns/etc. But such operands can be
postponable instructions, like Cmp, InsertElement or InsertValue. Such
operands still must be postponed, vectorizer should not try to vectorize
them immediately.
Differential Revision: https://reviews.llvm.org/D131965
In many cases constant buildvector results in a vector load from a
constant/data pool. Need to consider this cost too.
Differential Revision: https://reviews.llvm.org/D126885
Currently, we try to vectorize values, feeding into stores, only if
slp-vectorize-hor-store option is provided. We can safely enable
vectorization of the value operand of a single store in the basic block,
if the operand value is used only in store.
It should enable extra vectorization and should not increase compile
time significantly.
Fixes https://github.com/llvm/llvm-project/issues/51320
Differential Revision: https://reviews.llvm.org/D131894
A const reference is preferred over a non-null const pointer.
`Type *` is kept as is to match the other overload.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D131197
1) Overloaded (instruction-based) method is a wrapper around the current (opcode-based) method.
2) This patch also changes a few callsites (VectorCombine.cpp,
SLPVectorizer.cpp, CodeGenPrepare.cpp) to call the overloaded method.
3) This is a split of D128302.
Differential Revision: https://reviews.llvm.org/D131114
We currently assert in vectorizeTree(TreeEntry*) when processing a PHI
bundle in a block containing a catchswitch. We attempt to set the
IRBuilder insertion point following the catchswitch, which is invalid.
This is done so that ShuffleBuilder.finalize() knows where to insert
a shuffle if one is needed.
To avoid this occurring, watch out for catchswitch blocks during
buildTree_rec() processing, and avoid adding PHIs in such blocks to
the vectorizable tree. It is unlikely that constraining vectorization
over an exception path will cause a noticeable performance loss, so
this seems preferable to trying to anticipate when a shuffle will and
will not be required.
This patch slightly extends the limit on the RecursionMaxDepth inside
the SLP vectorizer. It does it only when it hits a load (or zext/sext of
a load), which allows it to peek through in the places where it will be
the most valuable, without ballooning out the O(..) by any 2^n factors.
Differential Revision: https://reviews.llvm.org/D122148
If the root order itself does not require reordering, we can just
remove its reorder mask safely (e.g., if the root node is a vector of
phis). But if this node is used as an operand in the graph, we cannot
delete the reordering, need to keep it. Otherwise the graph nodes are
not synchronized with the operands. It may cause an extra gather
instruction(s) or a compiler crash.
Also, need to be very careful when selecting the gather nodes for
reordering since there might several gather nodes with the same scalars
and we can try to reorder just the same node many times instead of
different nodes.
Differential Revision: https://reviews.llvm.org/D128680
`commonAlignment` is a shortcut to pick the smallest of two `Align`
objects. As-is it doesn't bring much value compared to `std::min`.
Differential Revision: https://reviews.llvm.org/D128345
Improved/fixed cost modeling for shuffles by providing masks, improved
cost model for non-identity insertelements.
Differential Revision: https://reviews.llvm.org/D115462
If the masked gather nodes must be reordered, we can just reorder
scalars, just like for gather nodes. But if the node contains reused
scalars, it must be handled same way as a regular vectorizable node,
since need to reorder reused mask, not the scalars directly.
Differential Revision: https://reviews.llvm.org/D128360
This reverts commit cac60940b771a0685d058a5b471c84cea05fdc46.
Caused -Os -fsanitize=memory -march=haswell miscompile to pytorch/cpuinfo.
See my latest comment (may update) on D115462.
This reverts commit f1ee2738b3d70fea803ac1f3401c2fc9f61e514a.
Revert due to the revert of a dependent commit `[SLP]Improve shuffles cost estimation where possible.`
During the reordering transformation we should try to avoid reordering bundles
like fadd,fsub because this may block them being matched into a single vector
instruction in x86.
We do this by checking if a TreeEntry is such a pattern and adding it to the
list of TreeEntries with orders that need to be considered.
Differential Revision: https://reviews.llvm.org/D125712
If the OffsetBeg + InsertVecSz is greater than VecSz, need to estimate
the cost as shuffle of 2 vector, not as insert of subvector. Otherwise,
the inserted subvector is out of range and compiler may crash.
Differential Revision: https://reviews.llvm.org/D128071
If the root scalar is mapped to to the smallest bit width, the vector is
truncated and the types between original buildvector and extracted value
mismatched. For extract, we emit sext/zext instructions, for shuffles we
can reuse oringal vector instead of the truncated one.
Differential Revision: https://reviews.llvm.org/D127974
Currently scatter vectorize nodes can be emitted only for GEPs with
constant indices. But we can also emit such nodes for GEPs with the same
ptr and non-constant vectorizable/gathered indices, if profitable. Patch
adds support for such nodes and tries to improve handling of GEPs with
non-const indeces for such nodes.
Metric: SLP.NumVectorInstructions
Program SLP.NumVectorInstructions
results results0 diff
test-suite :: External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s.test 5243.00 5240.00 -0.1%
test-suite :: External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r.test 5243.00 5240.00 -0.1%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 27550.00 27507.00 -0.2%
test-suite :: External/SPEC/CFP2006/453.povray/453.povray.test 5395.00 5380.00 -0.3%
test-suite :: External/SPEC/CFP2017rate/511.povray_r/511.povray_r.test 5389.00 5374.00 -0.3%
test-suite :: External/SPEC/CINT2017rate/520.omnetpp_r/520.omnetpp_r.test 961.00 958.00 -0.3%
test-suite :: External/SPEC/CINT2017speed/620.omnetpp_s/620.omnetpp_s.test 961.00 958.00 -0.3%
test-suite :: External/SPEC/CFP2006/447.dealII/447.dealII.test 5664.00 5643.00 -0.4%
test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 13202.00 13127.00 -0.6%
test-suite :: External/SPEC/CINT2006/445.gobmk/445.gobmk.test 212.00 207.00 -2.4%
test-suite :: MultiSource/Benchmarks/7zip/7zip-benchmark.test 890.00 850.00 -4.5%
test-suite :: External/SPEC/CINT2006/464.h264ref/464.h264ref.test 1695.00 1581.00 -6.7%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 2338.00 2140.00 -8.5%
test-suite :: SingleSource/UnitTests/matrix-types-spec.test 63.00 55.00 -12.7%
test-suite :: SingleSource/Benchmarks/Adobe-C++/loop_unroll.test 468.00 356.00 -23.9%
Geomean difference -0.3%
All numbers show increased number of generated vector instructions.
Diff:
SingleSource/Benchmarks/Adobe-C++/loop_unroll - better without LTO, but
need an extra analysis with LTO (with LTO compiler generates
masked_gather, while before regular loads were emitted because of extra
data, availbale at LTO time).
SingleSource/UnitTests/matrix-types-spec - more vector code.
MultiSource/Applications/JM/lencod/lencod - same.
External/SPEC/CINT2006/464.h264ref/464.h264ref - same.
MultiSource/Benchmarks/7zip/7zip-benchmark - same.
External/SPEC/CINT2006/445.gobmk/445.gobmk - no changes.
External/SPEC/CFP2017rate/510.parest_r/510.parest_r - more vector code.
External/SPEC/CFP2006/447.dealII/447.dealII - same
External/SPEC/CINT2017speed/620.omnetpp_s/620.omnetpp_s - same
External/SPEC/CINT2017rate/520.omnetpp_r/520.omnetpp - same
External/SPEC/CFP2017rate/511.povray_r/511.povray - same
External/SPEC/CFP2006/453.povray/453.povray - same
External/SPEC/CFP2017rate/526.blender_r/526.blender_r - same
External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r - same
External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s - same
Differential Revision: https://reviews.llvm.org/D127219
We can skip the analysis of the constant nodes, their order should not
affect the ordering of the trees/subtrees.
Differential Revision: https://reviews.llvm.org/D127775