Move the FT_Relaxable-in-BSS check from frequently-called
MCObjectStreamer::emitInstruction to MCAssembler::writeSectionData,
along with existing checks for other fragment types. For the uncommon
diagnostics, losing the location information is acceptable.
... by eagerly allocating an empty fragment when adding a fragment
with a variable-size tail.
X86AsmBackend, The JCC erratum mitigation and x86-pad-for-align set a
flag for FT_Relaxable, which needs to be moved to emitInstructionBegin.
```
if (CF->getKind() == MCFragment::FT_Relaxable)
CF->setAllowAutoPadding(canPadInst(Inst, OS));
```
Follow-up to #148544
First, avoid checking MCSubtargetInfo by reducing unnecessary overhead
introduced in https://reviews.llvm.org/D44928 . That change passed STI
to both FT_Data and FT_Relaxable fragments, but STI is only necessary
for FT_Relaxable.
The use of STI in FT_Data was added for:
* Bundle alignment mode, which has been removed (#148781).
* ARM, which inappropriately uses STI in `ARMAsmBackend::applyFixup` due
to tech debt, unlike other targets. All tests passed even without the
`copySTI` change.
To ensure safety, `copySTI` now starts a new fragment to prevent mixed
STI values.
Second, avoid checking LinkerRelaxable by eagerly starting a new
fragment when a FT_Data/FT_Align fragment is marked linker-relaxable.
There is currently an extra empty FT_Data if an alignment immediately
follows a linker-relaxable fragment, which will be improved in the
future when FT_Align information is moved to the variable-tail.
Pull Request: https://github.com/llvm/llvm-project/pull/149471
* Fix `.reloc constant` to mean section_symbol+constant instead of
.+constant . The initial .reloc support from MIPS incorrectly
interpreted the offset.
* Delay the evaluation of the offset expression after
MCAssembler::layout, deleting a lot of code working with MCFragment.
* Delete many FIXME from https://reviews.llvm.org/D79625
* Some lld/ELF/Arch/LoongArch.cpp relaxation tests rely on .reloc .,
R_LARCH_ALIGN generating ALIGN relocations at specific location.
Sort the relocations.
Refactor the fragment representation of `push rax; jmp foo; nop; jmp foo`,
previously encoded as
`MCDataFragment(nop); MCRelaxableFragment(jmp foo); MCDataFragment(nop); MCRelaxableFragment(jmp foo)`,
to
```
MCFragment(fixed: push rax, variable: jmp foo)
MCFragment(fixed: nop, variable: jmp foo)
```
Changes:
* Eliminate MCEncodedFragment, moving content and fixup storage to MCFragment.
* The new MCFragment contains a fixed-size content (similar to previous
MCDataFragment) and an optional variable-size tail.
* The variable-size tail supports FT_Relaxable, FT_LEB, FT_Dwarf, and
FT_DwarfFrame, with plans to extend to other fragment types.
dyn_cast/isa should be avoided for the converted fragment subclasses.
* In `setVarFixups`, source fixup offsets are relative to the variable part's start.
Stored fixup (in `FixupStorage`) offsets are relative to the fixed part's start.
A lot of code does `getFragmentOffset(Frag) + Fixup.getOffset()`,
expecting the fixup offset to be relative to the fixed part's start.
* HexagonAsmBackend::fixupNeedsRelaxationAdvanced needs to know the
associated instruction for a fixup. We have to add a `const MCFragment &` parameter.
* In MCObjectStreamer, extend `absoluteSymbolDiff` to apply to
FT_Relaxable as otherwise there would be many more FT_DwarfFrame
fragments in -g compilations.
https://llvm-compile-time-tracker.com/compare.php?from=28e1473e8e523150914e8c7ea50b44fb0d2a8d65&to=778d68ad1d48e7f111ea853dd249912c601bee89&stat=instructions:u
```
stage2-O0-g instructins:u geomeon (-0.07%)
stage1-ReleaseLTO-g (link only) max-rss geomean (-0.39%)
```
```
% /t/clang-old -g -c sqlite3.i -w -mllvm -debug-only=mc-dump &| awk '/^[0-9]+/{s[$2]++;tot++} END{print "Total",tot; n=asorti(s, si); for(i=1;i<=n;i++) print si[i],s[si[i]]}'
Total 59675
Align 2215
Data 29700
Dwarf 12044
DwarfCallFrame 4216
Fill 92
LEB 12
Relaxable 11396
% /t/clang-new -g -c sqlite3.i -w -mllvm -debug-only=mc-dump &| awk '/^[0-9]+/{s[$2]++;tot++} END{print "Total",tot; n=asorti(s, si); for(i=1;i<=n;i++) print si[i],s[si[i]]}'
Total 32287
Align 2215
Data 2312
Dwarf 12044
DwarfCallFrame 4216
Fill 92
LEB 12
Relaxable 11396
```
Pull Request: https://github.com/llvm/llvm-project/pull/148544
The being-removed PNaCl has a Software Fault Isolation mechanism, which
requires that certain instructions and groups of instructions do not
cross a bundle boundary. When `.bundle_align_mode` is in effect, each
instruction is placed in its own fragment, allowing flexible NOP
padding.
This feature has significantly complicated our refactoring of MCStreamer
and MCFragment, leading to considerable effort spent untangling
it (including flushPendingLabels (75006466296ed4b0f845cbbec4bf77c21de43b40),
MCAssembler iteration improvement, and recent MCFragment refactoring).
* Make MCObjectStreamer::emitInstToData non-virtual and delete
MCELFStreamer::emitInstTodata
* Delete MCELFStreamer::emitValueImpl and emitValueToAlignment
Minor instructions:u decrease for both -O0 -g and -O3 builds
https://llvm-compile-time-tracker.com/compare.php?from=c06d3a7b728293cbc53ff91239d6cd87c0982ffb&to=9b078c7f228bc5b6cdbfe839f751c9407f8aec3e&stat=instructions:u
Pull Request: https://github.com/llvm/llvm-project/pull/148781
* Rename the vague `Value` to `Fill`.
* FillLen is at most 8. Making the field smaller to facilitate encoding
MCAlignFragment as a MCFragment union member.
* Replace an unreachable report_fatal_error with assert.
To prepare for moving content and fixup member variables from
MCEncodedFragment to MCFragment and removing
MCDataFragment/MCRelaxableFragment classes, replace dyn_cast with
getKind() tests.
Follow-up to #146307
Moved MCInst storage to MCSection, enabling trivial ~MCRelaxableFragment
and eliminating the need for a fragment walk in ~MCSection.
Updated MCRelaxableFragment::getInst to construct an MCInst on demand.
Modified MCAssembler::relaxInstruction's mayNeedRelaxation to accept
opcode and operands instead of an MCInst, avoiding redundant MCInst
creation. Note that MCObjectStreamer::emitInstructionImpl calls
mayNeedRelaxation before determining the target fragment for the MCInst.
Unfortunately, we also have to encode `MCInst::Flags` to support
the EVEX prefix, e.g. `{evex} xorw $foo, %ax`
There is a small decrease in max-rss (stage1-ReleaseLTO-g (link only))
with negligible instructions:u change.
https://llvm-compile-time-tracker.com/compare.php?from=0b533f2d9f0551aaffb13dcac8e0fd0a952185b5&to=f26b57f33bc7ccae749a57dfc841de7ce2acc2ef&stat=max-rss&linkStats=on
Next: Enable MCFragment to store fixed-size data (was MCDataFragment's job)
and optional Opcode/Operands data (was MCRelaxableFragment's job),
and delete MCDataFragment/MCRelaxableFragment.
This will allow re-encoding of Data+Relax+Data+Relax sequences as
Frag+Frag. The saving should outweigh the downside of larger
MCFragment.
Pull Request: https://github.com/llvm/llvm-project/pull/147229
* Fix the crash for `.equiv b, undef; b:` (.equiv equates a symbol to an expression and reports an error if the symbol was already defined).
* Remove redundant isVariable check from emitFunctionEntryLabel
Pull Request: https://github.com/llvm/llvm-project/pull/145460
Commit bb03cdcb441fd68da9d1ebb7d5f39f73667cd39c caused a Linux kernel
regression https://github.com/ClangBuiltLinux/linux/issues/2091
When a section contains linker-relaxable MCAlignmentFragment but no
linker-relaxable instructions, the RISCVAsmBackend::isPCRelFixupResolved
code path should be taken as well. The #76552 condition in the fragment
walk code will make the fixup unresolvable, leading to a relocation.
Use a variable symbol without any specifier instead of VK_WEAKREF.
Add code in ELFObjectWriter::executePostLayoutBinding to check
whether the target should be made an undefined weak symbol.
This change fixes several issues:
* Unreferenced `.weakref alias, target` no longer creates an undefined `target`.
* When `alias` is already defined, report an error instead of crashing.
.weakref is specific to ELF. llvm-ml has reused the VK_WEAKREF name for
a different concept. wasm incorrectly copied the ELF implementation.
Remove it.
Remove FK_PCRel_* kinds from the generic fixup list, as they are not
generic like FK_Data_*. In getRelocType, FK_PCRel_* can be replaced with
FK_Data_* by leveraging the IsPCRel argument. Their inclusion in the
generic kind list caused confusion for PowerPC, RISCV, and VE targets.
The X86/M68k uses can be implemented as target-specific fixups.
DWARF linetable entries are usually emitted as a sequence of
MCDwarfLineAddrFragment fragments containing the line-number difference
and an MCExpr describing the instruction-range the linetable entry
covers. These then get relaxed during assembly emission.
However, a large number of these instruction-range expressions are
ranges within a fixed MCDataFragment, i.e. a range over fixed-size
instructions that are not subject to relaxation at a later stage. Thus,
we can compute the address-delta immediately, and not spend time and
memory describing that computation so it can be deferred.
The function is called to test the fast path - when Lo/Hi are within the
same fragment. This is unsafe - Lo/Hi at the begin and end of a
relaxable fragment should not evaluate to a constant. However, we don't
have tests that exercise the code path.
Nevertheless, make the check safer and remove the now unnecessary
isRISCV check (from https://reviews.llvm.org/D103539).
Reland https://github.com/llvm/llvm-project/pull/106230
The original PR was reverted due to compilation time regression.
This PR fixed that by adding a condition OutStreamer->isVerboseAsm() to
the generation of extra inlined-at debug info, so that it does not
affect normal compilation time.
Currently MC print source location of instructions in comments in
assembly when debug info is available, however, it does not include
inlined-at locations when a function is inlined.
For example, function foo is defined in header file a.h and is called
multiple times in b.cpp. If foo is inlined, current assembly will only
show its instructions with their line numbers in a.h. With inlined-at
locations, the assembly will also show where foo is called in b.cpp.
This patch adds inlined-at locations to the comments by using
DebugLoc::print. It makes the printed source location info consistent
with those printed by machine passes.
Currently MC print source location of instructions in comments in
assembly when debug info is available, however, it does not include
inlined-at locations when a function is inlined.
For example, function foo is defined in header file a.h and is called
multiple times in b.cpp. If foo is inlined, current assembly will only
show its instructions with their line numbers in a.h. With inlined-at
locations, the assembly will also show where foo is called in b.cpp.
This patch adds inlined-at locations to the comments by using
DebugLoc::print. It makes the printed source location info consistent
with those printed by machine passes.
https://reviews.llvm.org/D23669 inappropriately added MIPS-specific
dtprel/tprel directives to MCStreamer. In addition,
llvm-mc -filetype=null parsing these directives will crash.
This patch moves these functions to MipsTargetStreamer and fixes
-filetype=null.
gprel32 and gprel64, called by AsmPrinter, are moved to
MCTargetStreamer.
Avoid needless copying of instructions and fixups and directly emit into
the fragment small vectors.
This (optionally, second commit) also removes the single use of the
MCCompactEncodedInstFragment to simplify code.
https://reviews.llvm.org/D70157 (for Intel Jump Conditional Code
Erratum) introduced two virtual function calls in the generic
MCObjectStreamer::emitInstruction, which added some overhead.
This patch removes the virtual function overhead:
* Define `llvm::X86_MC::emitInstruction` that calls `emitInstruction{Begin,End}`.
* Define {X86ELFStreamer,X86WinCOFFStreamer}::emitInstruction to call `llvm::X86_MC::emitInstruction`
Pull Request: https://github.com/llvm/llvm-project/pull/96835
Follow-up to 05ba5c0648ae5e80d5afce270495bf3b1eef9af4. uint32_t is
preferred over const MCExpr * in the section stack uses because it
should only be evaluated once. Change the paramter type to match.
This commit removes the complexity introduced by pending labels in
https://reviews.llvm.org/D5915 by using a simpler approach. D5915 aimed
to ensure padding placement before `.Ltmp0` for the following code, but
at the cost of expensive per-instruction `flushPendingLabels`.
```
// similar to llvm/test/MC/X86/AlignedBundling/labeloffset.s
.bundle_lock align_to_end
calll .L0$pb
.bundle_unlock
.L0$pb:
popl %eax
.Ltmp0: //// padding should be inserted before this label instead of after
addl $_GLOBAL_OFFSET_TABLE_+(.Ltmp0-.L0$pb), %eax
```
(D5915 was adjusted by https://reviews.llvm.org/D8072 and
https://reviews.llvm.org/D71368)
This patch achieves the same goal by setting the offset of the empty
MCDataFragment (`Prev`) in `layoutBundle`. This eliminates the need for
pending labels and simplifies the code.
llvm/test/MC/MachO/pending-labels.s (D71368): relocation symbols are
changed, but the result is still supported by linkers.