[CodeGen] Change the prototype of regalloc filter function
Change the prototype of the filter function so that we can
filter not just by RegClass. We need to implement more
complicated filter based upon some other info associated
with each register.
Patch provided by: Gang Chen (gangc@amd.com)
- Add `MachineBlockFrequencyAnalysis`.
- Add `MachineBlockFrequencyPrinterPass`.
- Use `MachineBlockFrequencyInfoWrapperPass` in legacy pass manager.
- `LazyMachineBlockFrequencyInfo::print` is empty, drop it due to new
pass manager migration.
- Add `LiveIntervalsAnalysis`.
- Add `LiveIntervalsPrinterPass`.
- Use `LiveIntervalsWrapperPass` in legacy pass manager.
- Use `std::unique_ptr` instead of raw pointer for `LICalc`, so
destructor and default move constructor can handle it correctly.
This would be the last analysis required by `PHIElimination`.
Previously, there was at least one virtual function call for every
allocated register. The only users of this feature are AMDGPU and RISC-V
(RVV), other targets don't use this. To easily identify these cases,
change the default functor to nullptr and don't call it for every
allocated register.
Prepare for new pass manager version of `MachineDominatorTreeAnalysis`.
We may need a machine dominator tree version of `DomTreeUpdater` to
handle `SplitCriticalEdge` in some CodeGen passes.
This patch make `LiveDebugVariables` can be used by passes outside of
`lib/CodeGen`.
If we run a pass that occurs between the split register allocation pass
without preserving this pass, it will be freed and recomputed until it
encounters the next pass that needs LiveDebugVariables.
However, `LiveDebugVariables` will raise an assertion due to the pass
being freed without emitting a debug value.
This is reason we need `LiveDebugVariables` to be available for passes
outside of lib/Codegen.
This was stored in LiveIntervals, but not actually used for anything
related to LiveIntervals. It was only used in one check for if a load
instruction is rematerializable. I also don't think this was entirely
correct, since it was implicitly assuming constant loads are also
dereferenceable.
Remove this and rely only on the invariant+dereferenceable flags in
the memory operand. Set the flag based on the AA query upfront. This
should have the same net benefit, but has the possible disadvantage of
making this AA query nonlazy.
Preserve the behavior of assuming pointsToConstantMemory implying
dereferenceable for now, but maybe this should be changed.
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
To correctly use Query, one had to first call collectInterferingVRegs to
pre-cache the query result, then call interferingVRegs. Failing the
former, interferingVRegs could be stale. This did cause a bug which was
addressed in D98232, but the underlying usability issue of the Query API
wasn't.
This patch addresses the latter by making collectInterferingVRegs an
implementation detail, and having interferingVRegs play both roles. One
side-effect of this is that interferingVRegs is not const anymore.
Differential Revision: https://reviews.llvm.org/D112882
AMDGPU normally spills SGPRs to VGPRs. Previously, since all register
classes are handled at the same time, this was problematic. We don't
know ahead of time how many registers will be needed to be reserved to
handle the spilling. If no VGPRs were left for spilling, we would have
to try to spill to memory. If the spilled SGPRs were required for exec
mask manipulation, it is highly problematic because the lanes active
at the point of spill are not necessarily the same as at the restore
point.
Avoid this problem by fully allocating SGPRs in a separate regalloc
run from VGPRs. This way we know the exact number of VGPRs needed, and
can reserve them for a second run. This fixes the most serious
issues, but it is still possible using inline asm to make all VGPRs
unavailable. Start erroring in the case where we ever would require
memory for an SGPR spill.
This is implemented by giving each regalloc pass a callback which
reports if a register class should be handled or not. A few passes
need some small changes to deal with leftover virtual registers.
In the AMDGPU implementation, a new pass is introduced to take the
place of PrologEpilogInserter for SGPR spills emitted during the first
run.
One disadvantage of this is currently StackSlotColoring is no longer
used for SGPR spills. It would need to be run again, which will
require more work.
Error if the standard -regalloc option is used. Introduce new separate
-sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be
controlled individually. PBQB is not currently supported, so this also
prevents using the unhandled allocator.
VirtRegAuxInfo is an extensibility point, so the register allocator's
decision on which implementation to use should be communicated to the
other users - namely, LiveRangeEdit.
Differential Revision: https://reviews.llvm.org/D96898
The change starts from LiveRangeMatrix and also checks the users of the
APIs are typed accordingly.
Differential Revision: https://reviews.llvm.org/D89145
It's never null - the reason it's modeled as a pointer is because the
pass can't init it in its ctor. Passing by ref simplifies the code, too,
as the null checks were unnecessary complexity.
Differential Revision: https://reviews.llvm.org/D89171
All the state of VRAI is allocator-wide, so we can avoid creating it
every time we need it. In addition, the normalization function is
allocator-specific. In a next change, we can simplify that design in
favor of just having it as a virtual member.
Differential Revision: https://reviews.llvm.org/D88499
Added unittests. In the process, separated core construction - which just
needs the hits, order, and 'HardHints' values - from construction from
current register allocation state, to simplify testing.
Differential Revision: https://reviews.llvm.org/D88455
Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
This allows Spiller.h to be used and included outside of
the lib/CodeGen directory. For example to be used in the
lib/Target directory or other places.
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
removing them"
This was temporarily reverted, but now that the fix has been commited (r313197)
it should be put back in place.
https://bugs.llvm.org/show_bug.cgi?id=34502
This reverts commit 9ef93d9dc4c51568e858cf8203cd2c5ce8dca796.
llvm-svn: 313349
When removing a live-range we used to not touch them making debug
prints harder to read because the IR was not matching what the
live-ranges information was saying.
This only affects debug printing and allows to put stronger asserts in
the code (see r308906 for instance).
llvm-svn: 311401
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Prior to this patch we used to not touch the LiveRegMatrix while doing
live-range splitting. In other words, when live-range splitting was
occurring, the LiveRegMatrix was not reflecting the changes.
This is generally fine because it means the query to the LiveRegMatrix
will be conservately correct. However, when decisions are taken based on
what is going to happen on the interferences (e.g., when we spill a
register and know that it is going to be available for another one), we
might hit an assertion that the color used for the assignment is still
in use.
This patch makes sure the changes on the live-ranges are properly
reflected in the LiveRegMatrix, so the assertions don't break.
An alternative could have been to remove the assertion, but it would
make the invariants of the code and the general reasoning more
complicated in my opnion.
http://llvm.org/PR33057
llvm-svn: 304603
Use the initializeXXX method to initialize the RABasic pass in the
pipeline. This enables us to take advantage of the .mir infrastructure.
llvm-svn: 304602
I want to compute the SSA property of .mir files automatically in
upcoming patches. The problem with this is that some inputs will be
reported as static single assignment with some passes claiming not to
support SSA form. In reality though those passes do not support PHI
instructions => Track the presence of PHI instructions separate from the
SSA property.
Differential Revision: https://reviews.llvm.org/D22719
llvm-svn: 279573
two fixes with one about error verify-regalloc reported, and
another about live range update of phi after rematerialization.
r265547:
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Patches on top of r265547:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
Differential Revision: http://reviews.llvm.org/D15302
Differential Revision: http://reviews.llvm.org/D18934
Differential Revision: http://reviews.llvm.org/D18935
Differential Revision: http://reviews.llvm.org/D18936
llvm-svn: 266162
It caused PR27275: "ARM: Bad machine code: Using an undefined physical register"
Also reverting the following commits that were landed on top:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
llvm-svn: 265790
when DenseMap growed and moved memory. I verified it fixed the bootstrap
problem on x86_64-linux-gnu but I cannot verify whether it fixes
the bootstrap error on clang-ppc64be-linux. I will watch the build-bot
result closely.
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Differential Revision: http://reviews.llvm.org/D15302
llvm-svn: 265547