225 Commits

Author SHA1 Message Date
Joseph Huber
11fcae69db
[LLVM] Add __builtin_readsteadycounter intrinsic and builtin for realtime clocks (#81331)
Summary:
This patch adds a new intrinsic and builtin function mirroring the
existing `__builtin_readcyclecounter`. The difference is that this
implementation targets a separate counter that some targets have which
returns a fixed frequency clock that can be used to determine elapsed
time, this is different compared to the cycle counter which often has
variable frequency.

This patch only adds support for the NVPTX and AMDGPU targets.

This is done as a new and separate builtin rather than an argument to
`readcyclecounter` to avoid needing to change existing code and to make
the separation more explicit.
2024-02-13 10:06:25 -06:00
Nico Weber
184ca39529
[llvm] Move CodeGenTypes library to its own directory (#79444)
Finally addresses https://reviews.llvm.org/D148769#4311232 :)

No behavior change.
2024-01-25 12:01:31 -05:00
Alex Bradbury
197214e39b
[RFC][SelectionDAG] Add and use SDNode::getAsZExtVal() helper (#76710)
This follows on from #76708, allowing
`cast<ConstantSDNode>(N)->getZExtValue()` to be replaced with just
`N->getAsZextVal();`
    
Introduced via `git grep -l "cast<ConstantSDNode>\(.*\).*getZExtValue" |
xargs sed -E -i
's/cast<ConstantSDNode>\((.*)\)->getZExtValue/\1->getAsZExtVal/'` and
then using `git clang-format` on the result.
2024-01-09 12:25:17 +00:00
Craig Topper
bbd57e1832
[SelectionDAG] Add initial plumbing for the disjoint flag. (#76751)
This copies the flag from IR to the SDNode in SelectionDAGBuilder, clears
the flag in SimplifyDemandedBits, and adds it to canCreateUndefOrPoison.

Uses of the flag will come in later patches.
2024-01-02 21:58:00 -08:00
Craig Topper
70b35ec0a8
[SelectionDAG] Add initial support for nneg flag on ISD::ZERO_EXTEND. (#70872)
This adds the nneg flag to SDNodeFlags and the node printing code.
SelectionDAGBuilder will add this flag to the node if the target doesn't
prefer sign extend.

A future RISC-V patch can remove the sign extend preference from
SelectionDAGBuilder.

I've also added the flag to the DAG combine that converts
ISD::SIGN_EXTEND to ISD::ZERO_EXTEND.
2023-11-03 11:15:08 -07:00
Matt Arsenault
b14e83d1a4 IR: Add llvm.exp10 intrinsic
We currently have log, log2, log10, exp and exp2 intrinsics. Add exp10
to fix this asymmetry. AMDGPU already has most of the code for f32
exp10 expansion implemented alongside exp, so the current
implementation is duplicating nearly identical effort between the
compiler and library which is inconvenient.

https://reviews.llvm.org/D157871
2023-09-01 19:45:03 -04:00
Daniel Paoliello
0c5c7b52f0 Emit the CodeView S_ARMSWITCHTABLE debug symbol for jump tables
The CodeView `S_ARMSWITCHTABLE` debug symbol is used to describe the layout of a jump table, it contains the following information:

* The address of the branch instruction that uses the jump table.
* The address of the jump table.
* The "base" address that the values in the jump table are relative to.
* The type of each entry (absolute pointer, a relative integer, a relative integer that is shifted).

Together this information can be used by debuggers and binary analysis tools to understand what an jump table indirect branch is doing and where it might jump to.

Documentation for the symbol can be found in the Microsoft PDB library dumper: 0fe89a942f/cvdump/dumpsym7.cpp (L5518)

This change adds support to LLVM to emit the `S_ARMSWITCHTABLE` debug symbol as well as to dump it out (for testing purposes).

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D149367
2023-08-31 12:06:50 -07:00
Arthur Eubanks
0a4fc4ac1c Revert "Emit the CodeView S_ARMSWITCHTABLE debug symbol for jump tables"
This reverts commit 8d0c3db388143f4e058b5f513a70fd5d089d51c3.

Causes crashes, see comments in https://reviews.llvm.org/D149367.

Some follow-up fixes are also reverted:

This reverts commit 636269f4fca44693bfd787b0a37bb0328ffcc085.
This reverts commit 5966079cf4d4de0285004eef051784d0d9f7a3a6.
This reverts commit e7294dbc85d24a08c716d9babbe7f68390cf219b.
2023-08-25 18:34:15 -07:00
Daniel Paoliello
8d0c3db388 Emit the CodeView S_ARMSWITCHTABLE debug symbol for jump tables
The CodeView `S_ARMSWITCHTABLE` debug symbol is used to describe the layout of a jump table, it contains the following information:

* The address of the branch instruction that uses the jump table.
* The address of the jump table.
* The "base" address that the values in the jump table are relative to.
* The type of each entry (absolute pointer, a relative integer, a relative integer that is shifted).

Together this information can be used by debuggers and binary analysis tools to understand what an jump table indirect branch is doing and where it might jump to.

Documentation for the symbol can be found in the Microsoft PDB library dumper: 0fe89a942f/cvdump/dumpsym7.cpp (L5518)

This change adds support to LLVM to emit the `S_ARMSWITCHTABLE` debug symbol as well as to dump it out (for testing purposes).

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D149367
2023-08-25 10:19:17 -07:00
Serge Pavlov
6862f0fab1 [FPEnv] Intrinsics for access to FP control modes
The change introduces intrinsics 'get_fpmode', 'set_fpmode' and
'reset_fpmode'. They manage all target dynamic floating-point control
modes, which include, for instance, rounding direction, precision,
treatment of denormals and so on. The intrinsics do the same
operations as the C library functions 'fegetmode' and 'fesetmode'. By
default they are lowered to calls to these functions.

Two main use cases are supported by this implementation.

1. Local modification of the control modes. In this case the code
usually has a pattern (in pseudocode):

    saved_modes = get_fpmode()
    set_fpmode(<new_modes>)
    ...
    <do operations under the new modes>
    ...
    set_fpmode(saved_modes)

In the case when it is known that the current FP environment is default,
the code may be shorter:

    set_fpmode(<new_modes>)
    ...
    <do operations under the new modes>
    ...
    reset_fpmode()

Such patterns appear not only in user code but also in implementations
of various FP controlling pragmas. In particular, the implementation of
`#pragma STDC FENV_ROUND` requires similar code if the target does not
support static rounding mode.

2. Portable control of FP modes. Usually FP control modes are set by
writing to some control register. Different targets have different
layout of this register, the way the register is accessed also may be
different. Using set of target-specific definitions for the control
register bits together with these intrinsic functions provides enough
portable way to handle control modes across wide range of hardware.

This change defines only llvm intrinsic function, which implement the
access required for the aforementioned use cases.

Differential Revision: https://reviews.llvm.org/D82525
2023-08-24 15:52:19 +07:00
Matt Arsenault
003b58f65b IR: Add llvm.frexp intrinsic
Add an intrinsic which returns the two pieces as multiple return
values. Alternatively could introduce a pair of intrinsics to
separately return the fractional and exponent parts.

AMDGPU has native instructions to return the two halves, but could use
some generic legalization and optimization handling. For example, we
should be able to handle legalization of f16 on older targets, and for
bf16. Additionally antique targets need a hardware workaround which
would be better handled in the backend rather than in library code
where it is now.
2023-06-28 14:50:16 -04:00
Anna Thomas
26bfbec5d2 [Intrinsic] Introduce reduction intrinsics for minimum/maximum
This patch introduces the reduction intrinsic for floating point minimum
and maximum which has the same semantics (for NaN and signed zero) as
llvm.minimum and llvm.maximum.

Reviewed-By: nikic

Differential Revision: https://reviews.llvm.org/D152370
2023-06-13 12:29:58 -04:00
Matt Arsenault
eece6ba283 IR: Add llvm.ldexp and llvm.experimental.constrained.ldexp intrinsics
AMDGPU has native instructions and target intrinsics for this, but
these really should be subject to legalization and generic
optimizations. This will enable legalization of f16->f32 on targets
without f16 support.

Implement a somewhat horrible inline expansion for targets without
libcall support. This could be better if we could introduce control
flow (GlobalISel version not yet implemented). Support for strictfp
legalization is less complete but works for the simple cases.
2023-06-06 17:07:18 -04:00
Serge Pavlov
eecaeb6f10 [FPEnv] Intrinsics for access to FP environment
The change implements intrinsics 'get_fpenv', 'set_fpenv' and 'reset_fpenv'.
They are used to read floating-point environment, set it or reset to
some default state. They do the same actions as C library functions
'fegetenv' and 'fesetenv'. By default these intrinsics are lowered to calls
to these functions.

The new intrinsics specify FP environment as a value of integer type, it
is convenient of most targets where the FP state is a content of some
register. Some targets however use long representations. On X86 the size
of FP environment is 256 bits, and even half of this size is not a legal
ibteger type. To facilitate legalization in such cases, two sets of DAG
nodes is used. Nodes GET_FPENV and SET_FPENV are used when FP
environment may be represented by a legal integer type. Nodes
GET_FPENV_MEM and SET_FPENV_MEM consider FP environment as a region in
memory, much like `fesetenv` and `fegetenv` do. They are used when
target has long representation for floationg-point state.

Differential Revision: https://reviews.llvm.org/D71742
2023-06-05 13:10:01 +07:00
NAKAMURA Takumi
c1221251fb Restore CodeGen/MachineValueType.h from Support
This is rework of;

  - rG13e77db2df94 (r328395; MVT)

Since `LowLevelType.h` has been restored to `CodeGen`, `MachinveValueType.h`
can be restored as well.

Depends on D148767

Differential Revision: https://reviews.llvm.org/D149024
2023-05-03 00:13:20 +09:00
Sergei Barannikov
e744e51b12 [SelectionDAG] Rename ADDCARRY/SUBCARRY to UADDO_CARRY/USUBO_CARRY (NFC)
This will make them consistent with other overflow-aware nodes.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D148196
2023-04-29 21:59:58 +03:00
Marco Elver
f693932fbe [SelectionDAG] Transitively copy NodeExtraInfo on RAUW
During legalization of the SelectionDAG, some nodes are replaced with
arch-specific nodes. These may be complex nodes, where the root node no
longer corresponds to the node that should carry the extra info.

Fix the issue by copying extra info to the new node and all its new
transitive operands during RAUW. See code comments for more details.

This fixes the remaining pcsections-atomics.ll tests on X86.

v2: Optimize copyExtraInfo() deep copy. For now we assume that only
NodeExtraInfo that have PCSections set require deep copy. Furthermore,
limit the depth of graph search while pre-populating the visited set,
assuming the to-be-replaced subgraph 'From' has limited complexity. An
assertion catches if the maximum depth needs to be increased.

Reviewed By: dvyukov

Differential Revision: https://reviews.llvm.org/D144677
2023-03-02 23:07:19 +01:00
Marco Elver
e0bc779000 Revert "[SelectionDAG] Transitively copy NodeExtraInfo on RAUW"
This reverts commit 7f635b90e7bdf1378fd9a65fc62b99e8e07d4aaf.

The current implementation causes pathological slowdowns in certain
cases: https://github.com/llvm/llvm-project/issues/61108
2023-03-02 09:39:44 +01:00
Marco Elver
7f635b90e7 [SelectionDAG] Transitively copy NodeExtraInfo on RAUW
During legalization of the SelectionDAG, some nodes are replaced with
arch-specific nodes. These may be complex nodes, where the root node no
longer corresponds to the node that should carry the extra info.

Fix the issue by copying extra info to the new node and all its new
transitive operands during RAUW. See code comments for more details.

This fixes the remaining pcsections-atomics.ll tests on X86.

Reviewed By: dvyukov

Differential Revision: https://reviews.llvm.org/D144677
2023-02-27 12:16:14 +01:00
Caroline Concatto
d515ecca68 [IR] Add new intrinsics interleave and deinterleave vectors
This patch adds 2 new intrinsics:

  ; Interleave two vectors into a wider vector
  <vscale x 4 x i64> @llvm.vector.interleave2.nxv2i64(<vscale x 2 x i64> %even, <vscale x 2 x i64> %odd)

  ; Deinterleave the odd and even lanes from a wider vector
  {<vscale x 2 x i64>, <vscale x 2 x i64>} @llvm.vector.deinterleave2.nxv2i64(<vscale x 4 x i64> %vec)

The main motivator for adding these intrinsics is to support vectorization of
complex types using scalable vectors.

The intrinsics are kept simple by only supporting a stride of 2, which makes
them easy to lower and type-legalize. A stride of 2 is sufficient to handle
complex types which only have a real/imaginary component.

The format of the intrinsics matches how `shufflevector` is used in
LoopVectorize. For example:

  using cf = std::complex<float>;

  void foo(cf * dst, int N) {
      for (int i=0; i<N; ++i)
          dst[i] += cf(1.f, 2.f);
  }

For this loop, LoopVectorize:
  (1) Loads a wide vector (e.g. <8 x float>)
  (2) Extracts odd lanes using shufflevector (leading to <4 x float>)
  (3) Extracts even lanes using shufflevector (leading to <4 x float>)
  (4) Performs the addition
  (5) Interleaves the two <4 x float> vectors into a single <8 x float> using
      shufflevector
  (6) Stores the wide vector.

In this example, we can 1-1 replace shufflevector in (2) and (3) with the
deinterleave intrinsic, and replace the shufflevector in (5) with the
interleave intrinsic.

The SelectionDAG nodes might be extended to support higher strides (3, 4, etc)
as well in the future.

Similar to what was done for vector.splice and vector.reverse, the intrinsic
is lowered to a shufflevector when the type is fixed width, so to benefit from
existing code that was written to recognize/optimize shufflevector patterns.

Note that this approach does not prevent us from adding new intrinsics for other
strides, or adding a more generic shuffle intrinsic in the future. It just solves
the immediate problem of being able to vectorize loops with complex math.

Reviewed By: paulwalker-arm

Differential Revision: https://reviews.llvm.org/D141924
2023-02-20 12:21:59 +00:00
Philip Reames
c651c0878f [CodeGen] Add standard print/debug utilities to EVT
Doing so makes it easier to do printf style debugging in idiomatic manner. I followed the code structure of Value with only the definition of dump being #ifdef out in non-debug builds. Not sure if this is the "right" option; we don't seem to have any single consistent scheme on how dump is handled.

Differential Revision: https://reviews.llvm.org/D143454
2023-02-07 08:38:44 -08:00
Matt Arsenault
778cf5431c IR: Add atomicrmw uinc_wrap and udec_wrap
These are essentially add/sub 1 with a clamping value.

AMDGPU has instructions for these. CUDA/HIP expose these as
atomicInc/atomicDec. Currently we use target intrinsics for these,
but those do no carry the ordering and syncscope. Add these to
atomicrmw so we can carry these and benefit from the regular
legalization processes.
2023-01-24 17:55:11 -04:00
Philip Reames
037636e695 [SDAG] Introduce a common MEMBARRIER node [nfc]
We have multiple targets which have defined custom instructions and sdag nodes to represent a compiler memory barrier. This patch consolidates the sdag node definition into common code.

This is a companion to D92842, but a bit different in focus. This change consolidates the existing sdag node definitions; that patch skipped defining a sdag node by instead going straight to a target node. That patch is also not NFC - as being so is quite hard for commoning up the instruction definitions.

I started with two backends to ensure the new common code was reusable while not having a massive diff. Once this lands, I'll submit a series of NFCs for backends where the changes are obvious, or reviews if more discussion is needed.

Differential Revision: https://reviews.llvm.org/D141317
2023-01-09 15:20:08 -08:00
Qiu Chaofan
a40ef656d8 [Intrinsic] Rename flt.rounds intrinsic to get.rounding
Address the inconsistency between FLT_ROUNDS_ and SET_ROUNDING SDAG
node. Rename FLT_ROUNDS_ to GET_ROUNDING and add llvm.get.rounding
intrinsic to replace flt.rounds.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D139507
2022-12-19 15:22:39 +08:00
Stanislav Mekhanoshin
a0c8f5fefa [SDAG] Print divergence in SDNode::dump
If target does not support divergence the field is set to false
and not printed.

Differential Revision: https://reviews.llvm.org/D133984
2022-09-16 11:43:34 -07:00
Edd Barrett
2e62a26fd7
[stackmaps] Legalise patchpoint arguments.
This is similar to D125680, but for llvm.experimental.patchpoint
(instead of llvm.experimental.stackmap).

Differential review: https://reviews.llvm.org/D129268
2022-07-15 12:01:59 +01:00
Edd Barrett
ed8ef65f3d
[stackmaps] Start legalizing live variable operands
Prior to this change, live variable operands passed to
`llvm.experimental.stackmap` would be emitted directly to target nodes,
meaning that they don't get legalised. The upshot of this is that LLVM
may crash when encountering illegally typed target nodes.

e.g. https://github.com/llvm/llvm-project/issues/21657

This change introduces a platform independent stackmap DAG node whose
operands are legalised as per usual, thus avoiding aforementioned
crashes.

Note that some kinds of argument are still not handled properly, namely
vectors, structs, and large integers, like i128s. These will need to be
addressed in follow-up changes.

Note also that this does not change the behaviour of
`llvm.experimental.patchpoint`. A follow up change will do the same for
this intrinsic.

Differential review:
https://reviews.llvm.org/D125680
2022-07-06 14:01:54 +01:00
Benjamin Kramer
fb34d531af Promote bf16 to f32 when the target doesn't support it
This is modeled after the half-precision fp support. Two new nodes are
introduced for casting from and to bf16. Since casting from bf16 is a
simple operation I opted to always directly lower it to integer
arithmetic. The other way round is more complicated if you want to
preserve IEEE semantics, so it's handled by a new __truncsfbf2
compiler-rt builtin.

This is of course very bare bones, but sufficient to get a semi-softened
fadd on x86.

Possible future improvements:
 - Targets with bf16 conversion instructions can now make fp_to_bf16 legal
 - The software conversion to bf16 can be replaced by a trivial
   implementation under fast math.

Differential Revision: https://reviews.llvm.org/D126953
2022-06-15 12:56:31 +02:00
Serge Pavlov
170a903144 Intrinsic for checking floating point class
This change introduces a new intrinsic, `llvm.is.fpclass`, which checks
if the provided floating-point number belongs to any of the the specified
value classes. The intrinsic implements the checks made by C standard
library functions `isnan`, `isinf`, `isfinite`, `isnormal`, `issubnormal`,
`issignaling` and corresponding IEEE-754 operations.

The primary motivation for this intrinsic is the support of strict FP
mode. In this mode using compare instructions or other FP operations is
not possible, because if the value is a signaling NaN, floating-point
exception `Invalid` is raised, but the aforementioned functions must
never raise exceptions.

Currently there are two solutions for this problem, both are
implemented partially. One of them is using integer operations to
implement the check. It was implemented in https://reviews.llvm.org/D95948
for `isnan`. It solves the problem of exceptions, but offers one
solution for all targets, although some can do the check in more
efficient way.

The other, implemented in https://reviews.llvm.org/D96568, introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects a target
specific code into IR to implement `isnan` and some other functions. It is
convenient for targets that have dedicated instruction to determine FP data
class. However using target-specific intrinsic complicates analysis and can
prevent some optimizations.

A special intrinsic for value class checks allows representing data class
tests with enough flexibility. During IR transformations it represents the
check in target-independent way and saves it from undesired transformations.
In the instruction selector it allows efficient lowering depending on the
used target and mode.

This implementation is an extended variant of `llvm.isnan` introduced
in https://reviews.llvm.org/D104854. It is limited to minimal intrinsic
support. Target-specific treatment will be implemented in separate
patches.

Differential Revision: https://reviews.llvm.org/D112025
2022-04-26 13:09:16 +07:00
Daniil Kovalev
62a983ebc5 Revert "[CodeGen] Place SDNode debug ID declaration under appropriate #if"
This reverts commit 83a798d4b0e17ac41d5430f1290d3661343eee1e.

As discussed in D120714 with @thakis, the patch added unneeded complexity
without noticeable benefits.
2022-04-06 20:32:53 +03:00
Daniil Kovalev
83a798d4b0 [CodeGen] Place SDNode debug ID declaration under appropriate #if
Place PersistentId declaration under #if LLVM_ENABLE_ABI_BREAKING_CHECKS to
reduce memory usage when it is not needed.

Differential Revision: https://reviews.llvm.org/D120714
2022-04-06 14:09:32 +03:00
Craig Topper
73f0af106b [SelectionDAG] Add printing support for the Align value of AssertAlign nodes.
Differential Revision: https://reviews.llvm.org/D122262
2022-03-22 14:16:32 -07:00
serge-sans-paille
ed98c1b376 Cleanup includes: DebugInfo & CodeGen
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D121332
2022-03-12 17:26:40 +01:00
David Green
4072e362c0 [ISel] Port AArch64 HADD and RHADD to ISel
This ports the aarch64 combines for HADD and RHADD over to DAG combine,
so that they can be used in more architectures (notably MVE in a
followup patch). They are renamed to AVGFLOOR and AVGCEIL in the
process, to avoid confusion with instructions such as X86 hadd. The code
was also rewritten slightly to remove the AArch64 idiosyncrasies.

The general pattern for a AVGFLOORS is
  %xe = sext i8 %x to i32
  %ye = sext i8 %y to i32
  %a = add i32 %xe, %ye
  %r = lshr i32 %a, 1
  %t = trunc i32 %r to i8

An AVGFLOORU is equivalent with zext. Because of the truncate
lshr==ashr, as the top bits are not demanded. An AVGCEIL also includes
an extra rounding, so includes an extra add of 1.

Differential Revision: https://reviews.llvm.org/D106237
2022-02-11 18:28:56 +00:00
Roman Lebedev
3f1f08f0ed
Revert @llvm.isnan intrinsic patchset.
Please refer to
https://lists.llvm.org/pipermail/llvm-dev/2021-September/152440.html
(and that whole thread.)

TLDR: the original patch had no prior RFC, yet it had some changes that
really need a proper RFC discussion. It won't be productive to discuss
such an RFC, once it's actually posted, while said patch is already
committed, because that introduces bias towards already-committed stuff,
and the tree is potentially in broken state meanwhile.

While the end result of discussion may lead back to the current design,
it may also not lead to the current design.

Therefore i take it upon myself
to revert the tree back to last known good state.

This reverts commit 4c4093e6e39fe6601f9c95a95a6bc242ef648cd5.
This reverts commit 0a2b1ba33ae6dcaedb81417f7c4cc714f72a5968.
This reverts commit d9873711cb03ac7aedcaadcba42f82c66e962e6e.
This reverts commit 791006fb8c6fff4f33c33cb513a96b1d3f94c767.
This reverts commit c22b64ef66f7518abb6f022fcdfd86d16c764caf.
This reverts commit 72ebcd3198327da12804305bda13d9b7088772a8.
This reverts commit 5fa6039a5fc1b6392a3c9a3326a76604e0cb1001.
This reverts commit 9efda541bfbd145de90f7db38d935db6246dc45a.
This reverts commit 94d3ff09cfa8d7aecf480e54da9a5334e262e76b.
2021-09-02 13:53:56 +03:00
Serge Pavlov
4c4093e6e3 Introduce intrinsic llvm.isnan
This is recommit of the patch 16ff91ebccda1128c43ff3cee104e2c603569fb2,
reverted in 0c28a7c990c5218d6aec47c5052a51cba686ec5e because it had
an error in call of getFastMathFlags (base type should be FPMathOperator
but not Instruction). The original commit message is duplicated below:

    Clang has builtin function '__builtin_isnan', which implements C
    library function 'isnan'. This function now is implemented entirely in
    clang codegen, which expands the function into set of IR operations.
    There are three mechanisms by which the expansion can be made.

    * The most common mechanism is using an unordered comparison made by
      instruction 'fcmp uno'. This simple solution is target-independent
      and works well in most cases. It however is not suitable if floating
      point exceptions are tracked. Corresponding IEEE 754 operation and C
      function must never raise FP exception, even if the argument is a
      signaling NaN. Compare instructions usually does not have such
      property, they raise 'invalid' exception in such case. So this
      mechanism is unsuitable when exception behavior is strict. In
      particular it could result in unexpected trapping if argument is SNaN.

    * Another solution was implemented in https://reviews.llvm.org/D95948.
      It is used in the cases when raising FP exceptions by 'isnan' is not
      allowed. This solution implements 'isnan' using integer operations.
      It solves the problem of exceptions, but offers one solution for all
      targets, however some can do the check in more efficient way.

    * Solution implemented by https://reviews.llvm.org/D96568 introduced a
      hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
      specific code into IR. Now only SystemZ implements this hook and it
      generates a call to target specific intrinsic function.

    Although these mechanisms allow to implement 'isnan' with enough
    efficiency, expanding 'isnan' in clang has drawbacks:

    * The operation 'isnan' is hidden behind generic integer operations or
      target-specific intrinsics. It complicates analysis and can prevent
      some optimizations.

    * IR can be created by tools other than clang, in this case treatment
      of 'isnan' has to be duplicated in that tool.

    Another issue with the current implementation of 'isnan' comes from the
    use of options '-ffast-math' or '-fno-honor-nans'. If such option is
    specified, 'fcmp uno' may be optimized to 'false'. It is valid
    optimization in general, but it results in 'isnan' always returning
    'false'. For example, in some libc++ implementations the following code
    returns 'false':

        std::isnan(std::numeric_limits<float>::quiet_NaN())

    The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
    operands are never NaNs. This assumption however should not be applied
    to the functions that check FP number properties, including 'isnan'. If
    such function returns expected result instead of actually making
    checks, it becomes useless in many cases. The option '-ffast-math' is
    often used for performance critical code, as it can speed up execution
    by the expense of manual treatment of corner cases. If 'isnan' returns
    assumed result, a user cannot use it in the manual treatment of NaNs
    and has to invent replacements, like making the check using integer
    operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
    which also expresses the opinion, that limitations imposed by
    '-ffast-math' should be applied only to 'math' functions but not to
    'tests'.

    To overcome these drawbacks, this change introduces a new IR intrinsic
    function 'llvm.isnan', which realizes the check as specified by IEEE-754
    and C standards in target-agnostic way. During IR transformations it
    does not undergo undesirable optimizations. It reaches instruction
    selection, where is lowered in target-dependent way. The lowering can
    vary depending on options like '-ffast-math' or '-ffp-model' so the
    resulting code satisfies requested semantics.

    Differential Revision: https://reviews.llvm.org/D104854
2021-08-06 14:32:27 +07:00
Serge Pavlov
0c28a7c990 Revert "Introduce intrinsic llvm.isnan"
This reverts commit 16ff91ebccda1128c43ff3cee104e2c603569fb2.
Several errors were reported mainly test-suite execution time. Reverted
for investigation.
2021-08-04 17:18:15 +07:00
Serge Pavlov
16ff91ebcc Introduce intrinsic llvm.isnan
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.

* The most common mechanism is using an unordered comparison made by
  instruction 'fcmp uno'. This simple solution is target-independent
  and works well in most cases. It however is not suitable if floating
  point exceptions are tracked. Corresponding IEEE 754 operation and C
  function must never raise FP exception, even if the argument is a
  signaling NaN. Compare instructions usually does not have such
  property, they raise 'invalid' exception in such case. So this
  mechanism is unsuitable when exception behavior is strict. In
  particular it could result in unexpected trapping if argument is SNaN.

* Another solution was implemented in https://reviews.llvm.org/D95948.
  It is used in the cases when raising FP exceptions by 'isnan' is not
  allowed. This solution implements 'isnan' using integer operations.
  It solves the problem of exceptions, but offers one solution for all
  targets, however some can do the check in more efficient way.

* Solution implemented by https://reviews.llvm.org/D96568 introduced a
  hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
  specific code into IR. Now only SystemZ implements this hook and it
  generates a call to target specific intrinsic function.

Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:

* The operation 'isnan' is hidden behind generic integer operations or
  target-specific intrinsics. It complicates analysis and can prevent
  some optimizations.

* IR can be created by tools other than clang, in this case treatment
  of 'isnan' has to be duplicated in that tool.

Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':

    std::isnan(std::numeric_limits<float>::quiet_NaN())

The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.

To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.

Differential Revision: https://reviews.llvm.org/D104854
2021-08-04 15:27:49 +07:00
Simon Pilgrim
3c0b596ecc SelectionDAGDumper.cpp - remove nested if-else return chain. NFCI.
Match style and don't use an else after a return.
2021-07-30 19:23:05 +01:00
Simon Pilgrim
986841cca2 SelectionDAGDumper.cpp - printrWithDepthHelper - remove dead code. NFCI.
Fixes coverity warning - we have an early-out for unsigned depth == 0, so the depth < 1 early-out later on is dead code.
2021-07-30 19:23:04 +01:00
David Green
2887f14639 [ISel] Port AArch64 SABD and UABD to DAGCombine
This ports the AArch64 SABD and USBD over to DAG Combine, where they can be
used by more backends (notably MVE in a follow-up patch). The matching code
has changed very little, just to handle legal operations and types
differently. It selects from (ABS (SUB (EXTEND a), (EXTEND b))), producing
a ubds/abdu which is zexted to the original type.

Differential Revision: https://reviews.llvm.org/D91937
2021-06-26 19:34:16 +01:00
Jeroen Dobbelaere
bb8ce25e88 Intrinsic::getName: require a Module argument
Ensure that we provide a `Module` when checking if a rename of an intrinsic is necessary.

This fixes the issue that was detected by https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32288
(as mentioned by @fhahn), after committing D91250.

Note that the `LLVMIntrinsicCopyOverloadedName` is being deprecated in favor of `LLVMIntrinsicCopyOverloadedName2`.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D99173
2021-06-14 14:52:29 +02:00
David Sherwood
748ae5281d [IR][SVE] Add new llvm.experimental.stepvector intrinsic
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.

For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as

  mul step_vector(1), 2 -> step_vector(2)
  add step_vector(1), step_vector(1) -> step_vector(2)
  shl step_vector(1), 1 -> step_vector(2)
  etc.

that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.

I've added cost model tests for both fixed width and scalable
vectors:

  llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
  llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll

as well as codegen lowering tests for fixed width and scalable
vectors:

  llvm/test/CodeGen/AArch64/neon-stepvector.ll
  llvm/test/CodeGen/AArch64/sve-stepvector.ll

See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
2021-03-23 10:43:35 +00:00
Craig Topper
9106d04554 [RISCV][SelectionDAG] Introduce an ISD::SPLAT_VECTOR_PARTS node that can represent a splat of 2 i32 values into a nxvXi64 vector for riscv32.
On riscv32, i64 isn't a legal scalar type but we would like to
support scalable vectors of i64.

This patch introduces a new node that can represent a splat made
of multiple scalar values. I've used this new node to solve the current
crashes we experience when getConstant is used after type legalization.

For RISCV, we are now default expanding SPLAT_VECTOR to SPLAT_VECTOR_PARTS
when needed and then handling the SPLAT_VECTOR_PARTS later during
LegalizeOps. I've remove the special case I previously put in for
ABS for D97991 as the default expansion is now able to succesfully
use getConstant.

Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D98004
2021-03-10 09:46:18 -08:00
Cullen Rhodes
2750f3ed31 [IR] Introduce llvm.experimental.vector.splice intrinsic
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.

For example:

  @llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E>  ; index
  @llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count

These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.

This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].

Patch by Paul Walker and Cullen Rhodes.

[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D94708
2021-03-09 10:44:22 +00:00
gbtozers
9525af7b91 [DebugInfo] Support representation of multiple location operands in SDDbgValue
This patch modifies the class that represents debug values during ISel,
SDDbgValue, to support multiple location operands (to represent a dbg.value that
uses a DIArgList). Part of this class's functionality has been split off into a
new class, SDDbgOperand.

The new class SDDbgOperand represents a single value, corresponding to an SSA
value or MachineOperand in the IR and MIR respectively. Members of SDDbgValue
that were previously related to that specific value (as opposed to the
variable or DIExpression), such as the Kind enum, have been moved to
SDDbgOperand. SDDbgValue now contains an array of SDDbgOperand instead, allowing
it to hold more than one of these values.

All changes outside SDDbgValue are simply updates to use the new interface.

Differential Revision: https://reviews.llvm.org/D88585
2021-03-08 18:45:17 +00:00
Kazu Hirata
0b417ba20f [CodeGen] Use range-based for loops (NFC) 2021-02-20 21:46:02 -08:00
Caroline Concatto
2d728bbff5 [CodeGen][SelectionDAG]Add new intrinsic experimental.vector.reverse
This patch adds  a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
 reversed. For example:

```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```

The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.

This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].

Patch by Paul Walker (@paulwalker-arm).

[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html

Differential Revision: https://reviews.llvm.org/D94883
2021-02-15 13:39:43 +00:00
Serge Pavlov
bf416d166b [FPEnv] Intrinsic for setting rounding mode
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.

* It creates unnecessary dependency on libc. On the other hand, setting
  rounding mode requires few instructions and could be made by compiler.
  Sometimes standard C library even is not available, like in the case of
  GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
  call just sets rounding mode.

This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:

* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
  returns non-zero value in the case of failure. In glibc 'fesetround'
  reports failure if its argument is invalid or unsupported or if floating
  point operations are unavailable on the hardware. Compiler usually knows
  what core it generates code for and it can validate arguments in many
  cases.
* Rounding mode is specified in 'fesetround' using constants like
  'FE_TONEAREST', which are target dependent. It is inconvenient to work
  with such constants at IR level.

C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.

This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.

Differential Revision: https://reviews.llvm.org/D74729
2021-02-01 11:28:14 +07:00
Bjorn Pettersson
a89d751fb4 Add intrinsics for saturating float to int casts
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ

The intrinsics have overloaded source and result type and support
vector operands:

    i32 @llvm.fptoui.sat.i32.f32(float %f)
    i100 @llvm.fptoui.sat.i100.f64(double %f)
    <4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
    // etc

On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:

    i19 @llvm.fptsi.sat.i19.f32(float %f)
    // builds
    i19 fp_to_sint_sat f, 19
    // type legalizes (through integer result promotion)
    i32 fp_to_sint_sat f, 19

I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.

There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:

    f = fmaxnum f, FP(MIN)
    f = fminnum f, FP(MAX)
    i = fptoxi f
    i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN

If the bounds cannot be exactly represented, we expand to something
like this instead:

    i = fptoxi f
    i = select f ult FP(MIN), MIN, i
    i = select f ogt FP(MAX), MAX, i
    i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN

It should be noted that this expansion assumes a non-trapping fptoxi.

Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.

Original patch by @nikic and @ebevhan (based on D54696).

Differential Revision: https://reviews.llvm.org/D54749
2020-12-18 11:09:41 +01:00