Instead of expanding the src/sink SCEV expressions and emitting an IR
sub to compute the difference, the subtraction can be directly be
performed by ScalarEvolution. This allows the subtraction to be
simplified by SCEV, which in turn can reduced the number of redundant
runtime check instructions generated.
It also allows to generate checks that are invariant w.r.t. an outer
loop, if he inner loop AddRecs have the same outer loop AddRec as start.
THe freezes are introduced to avoid branch on undef/poison, if any of
the pointers may be poison. The same can be achieved by just freezing
the compare, which reduces the number of freezes needed. See
https://alive2.llvm.org/ce/z/NHa_ud
Note that the individual compares need to be frozen and it is not
sufficient to only freeze the resulting OR:
Result OR frozen only (UNSOUND): https://alive2.llvm.org/ce/z/YzFHQY
Individual conds frozen (SOUND): https://alive2.llvm.org/ce/z/5L6Z3f
There was a silly mistake in the expandBounds function that was using
the wrong type when calling expandCodeFor and always assuming the stride
is 64 bits. I've added the following test to defend this fix:
Transforms/LoopVectorize/ARM/mve-hoist-runtime-checks.ll
This patch removes the member TTI from VPReductionRecipe, as the
generation of reduction operations no longer requires TTI.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D158148
Suppose we have a nested loop like this:
void foo(int32_t *dst, int32_t *src, int m, int n) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
dst[(i * n) + j] += src[(i * n) + j];
}
}
}
We currently generate runtime memory checks as a precondition for
entering the vectorised version of the inner loop. However, if the
runtime-determined trip count for the inner loop is quite small
then the cost of these checks becomes quite expensive. This patch
attempts to mitigate these costs by adding a new option to
expand the memory ranges being checked to include the outer loop
as well. This leads to runtime checks that can then be hoisted
above the outer loop. For example, rather than looking for a
conflict between the memory ranges:
1. &dst[(i * n)] -> &dst[(i * n) + n]
2. &src[(i * n)] -> &src[(i * n) + n]
we can instead look at the expanded ranges:
1. &dst[0] -> &dst[((m - 1) * n) + n]
2. &src[0] -> &src[((m - 1) * n) + n]
which are outer-loop-invariant. As with many optimisations there
is a trade-off here, because there is a danger that using the
expanded ranges we may never enter the vectorised inner loop,
whereas with the smaller ranges we might enter at least once.
I have added a HoistRuntimeChecks option that is turned off by
default, but can be enabled for workloads where we know this is
guaranteed to be of real benefit. In future, we can also use
PGO to determine if this is worthwhile by using the inner loop
trip count information.
When enabling this option for SPEC2017 on neoverse-v1 with the
flags "-Ofast -mcpu=native -flto" I see an overall geomean
improvement of ~0.5%:
SPEC2017 results (+ is an improvement, - is a regression):
520.omnetpp: +2%
525.x264: +2%
557.xz: +1.2%
...
GEOMEAN: +0.5%
I didn't investigate all the differences to see if they are
genuine or noise, but I know the x264 improvement is real because
it has some hot nested loops with low trip counts where I can
see this hoisting is beneficial.
Tests have been added here:
Transforms/LoopVectorize/runtime-checks-hoist.ll
Differential Revision: https://reviews.llvm.org/D152366
Add an API that allows removing multiple incoming phi values based
on a predicate callback, as suggested on D157621.
This makes sure that the removal is linear time rather than quadratic,
and avoids subtleties around iterator invalidation.
I have replaced some of the more straightforward users with the new
API, though there's a couple more places that should be able to use it.
Differential Revision: https://reviews.llvm.org/D158064
Explicitly inserting undef is overly defensive. Any values computed
nside the loop that are referenced by dbg.values should naturally
become undef when the loop is deleted, and all other values that
are loop invariant must be preserved.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D153539
{mini|maxi}mum intrinsics are different from {min|max}num intrinsics in
the propagation of NaN and signed zero. Also, the minnum/maxnum
intrinsics require the presence of nsz flags to be valid reductions in
vectorizer. In this regard, we introduce a new recurrence kind and also
add support for identifying reduction patterns using these intrinsics.
The reduction intrinsics and lowering was introduced here: 26bfbec5d2.
There are tests added which show how this interacts across chains of
min/max patterns.
Differential Revision: https://reviews.llvm.org/D151482
Based off D148215, when expanding a min/max reduction we should be creating min/max intrinsics directly instead of relying on instcombine to fold them back together.
This patch handles integer min/max cases. Hopefully we can add floating point support soon (at least for fastmath/nnan cases) - but we're missing some of the plumbing to pass the correct FMF to the intrinsic at the moment.
Differential Revision: https://reviews.llvm.org/D148221
value() has undesired exception checking semantics and calls
__throw_bad_optional_access in libc++. Moreover, the API is unavailable without
_LIBCPP_NO_EXCEPTIONS on older Mach-O platforms (see
_LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS).
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Using a DebugVariable as the set key rather than std::pair<DIVariable *,
DIExpression *> ensures we don't accidently confuse multiple instances of
inlined variables.
Reviewed By: jryans
Differential Revision: https://reviews.llvm.org/D133303
breakLoopBackedge may remove blocks and loops. Also clear block &
loop disposition to avoid the cache containing invalid blocks and loops.
The coverage for the change is provided when using an ASAN build of opt
to run the LoopDeletion unit tests; without the fix, pointers to invalid
objects would be used.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D134663
After deleting a loop, the block and loop dispositions need to be
cleared. As we don't know which SCEVs in the loop/blocks may be
impacted, completely clear the cache. This should also fix some cases
where deleted loops remained in the LoopDispositions cache.
This fixes a verification failure surfaced by D134531.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D134613
I'm planning to deprecate and eventually remove llvm::empty.
I thought about replacing llvm::empty(x) with std::empty(x), but it
turns out that all uses can be converted to x.empty(). That is, no
use requires the ability of std::empty to accept C arrays and
std::initializer_list.
Differential Revision: https://reviews.llvm.org/D133677
This fixes https://github.com/llvm/llvm-project/issues/57336. It was exposed by a recent SCEV change, but appears to have been a long standing issue.
Note that the whole insert into the loop instead of a split exit edge is slightly contrived to begin with; it's there solely because IndVarSimplify preserves the CFG.
Differential Revision: https://reviews.llvm.org/D132571
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
isSafeToExpand() for addrecs depends on whether the SCEVExpander
will be used in CanonicalMode. At least one caller currently gets
this wrong, resulting in PR50506.
Fix this by a) making the CanonicalMode argument on the freestanding
functions required and b) adding member functions on SCEVExpander
that automatically take the SCEVExpander mode into account. We can
use the latter variant nearly everywhere, and thus make sure that
there is no chance of CanonicalMode mismatch.
Fixes https://github.com/llvm/llvm-project/issues/50506.
Differential Revision: https://reviews.llvm.org/D129630
Fix bug exposed by https://reviews.llvm.org/D125990
rewriteLoopExitValues calls InductionDescriptor::isInductionPHI which requires
the PHI node to have an incoming edge from the loop preheader. This adds checks
before calling InductionDescriptor::isInductionPHI to see that the loop has a
preheader. Also did some refactoring.
Differential Revision: https://reviews.llvm.org/D129297
SplitBlockPredecessors currently asserts if one of the predecessor
terminators is a callbr. This limitation was originally necessary,
because just like with indirectbr, it was not possible to replace
successors of a callbr. However, this is no longer the case since
D67252. As the requirement nowadays is that callbr must reference
all blockaddrs directly in the call arguments, and these get
automatically updated when setSuccessor() is called, we no longer
need this limitation.
The only thing we need to do here is use replaceSuccessorWith()
instead of replaceUsesOfWith(), because only the former does the
necessary blockaddr updating magic.
I believe there's other similar limitations that can be removed,
e.g. related to critical edge splitting.
Differential Revision: https://reviews.llvm.org/D129205
LoopSimplify only requires that the loop predecessor has a single
successor and is safe to hoist into -- it doesn't necessarily have
to be an unconditional BranchInst.
Adjust LoopDeletion to assert conditions closer to what it actually
needs for correctness, namely a single successor and a
side-effect-free terminator (as the terminator is getting dropped).
Fixes https://github.com/llvm/llvm-project/issues/56266.
This reverts commit 7aa8a678826dea86ff3e6c7df9d2a8a6ef868f5d.
This version includes fixes to address issues uncovered after
the commit landed and discussed at D11448.
Those include:
* Limit select-traversal to selects inside the loop.
* Freeze pointers resulting from looking through selects to avoid
branch-on-poison.