…types usi… (#144676)"
This reverts commit 68471d29eed2c49f9b439e505b3f24d387d54f97.
IntegralAP contains a union:
union {
uint64_t *Memory = nullptr;
uint64_t Val;
};
On 64bit systems, both Memory and Val have the same size. However, on 32
bit system, Val is 64bit and Memory only 32bit. Which means the default
initializer for Memory will only zero half of Val. We fixed this by
zero-initializing Val explicitly in the IntegralAP(unsigned BitWidth)
constructor.
See also the discussion in
https://github.com/llvm/llvm-project/pull/144246
Both `APInt` and `APFloat` will heap-allocate memory themselves using
the system allocator when the size of their data exceeds 64 bits.
This is why clang has `APNumericStorage`, which allocates its memory
using an allocator (via `ASTContext`) instead. Calling `getValue()` on
an ast node like that will then create a new `APInt`/`APFloat` , which
will copy the data (in the `APFloat` case, we even copy it twice).
That's sad but whatever.
In the bytecode interpreter, we have a similar problem. Large integers
and floating-point values are placement-new allocated into the
`InterpStack` (or into the bytecode, which is a `vector<std::byte>`).
When we then later interrupt interpretation, we don't run the destructor
for all items on the stack, which means we leak the memory the
`APInt`/`APFloat` (which backs the `IntegralAP`/`Floating` the
interpreter uses).
Fix this by using an approach similar to the one used in the AST. Add an
allocator to `InterpState`, which is used for temporaries and local
values. Those values will be freed at the end of interpretation. For
global variables, we need to promote the values to global lifetime,
which we do via `InitGlobal` and `FinishInitGlobal` ops.
Interestingly, this results in a slight _improvement_ in compile times:
https://llvm-compile-time-tracker.com/compare.php?from=6bfcdda9b1ddf0900f82f7e30cb5e3253a791d50&to=88d1d899127b408f0fb0f385c2c58e6283195049&stat=instructions:u
(but don't ask me why).
Fixes https://github.com/llvm/llvm-project/issues/139012
This simple patch removes the code to revisit `DecompositionDecl` in
`visitDeclRef`. The revisit will try to emit the initializer of the
`DecompositionDecl`, which could result in evaluation errors if the
`DecompositionDecl` is not within a constexpr context.
The passed indices have to be constant integers anyway, which we verify
before creating the ShuffleVectorExpr. Use the value we create there and
save the indices using a ConstantExpr instead. This way, we don't have
to evaluate the args every time we call getShuffleMaskIdx().
For
```c++
struct S {
constexpr S(int=0) : i(1) {}
int i;
};
constexpr volatile S vs;
```
reading from `vs.i` is not allowed, even though `i` is not volatile
qualified. Propagate the IsVolatile bit down the hierarchy, so we know
reading from `vs.i` is a volatile read.
Differentiate between a volarile read via a lvalue-to-rvalue cast of a
volatile qualified subexpression and a read from a pointer with a
volatile base object.
When emitting the jump for e.g. a for loop condition, we used to jump
out of the CondScope, leaving the scope initialized, because we skipped
the corresponding Destroy opcode. If that loop was in a loop itself,
that outer loop could then iterate once more, leading to us initializing
a scope that was still initialized.
Fix this by also destroying the scope after the EndLabel.
Fix comparing type id pointers, add mor info when print()ing them, use
the most derived type in GetTypeidPtr() and the canonically unqualified
type when we know the type statically.
This is a basic implementation of P2719: "Type-aware allocation and
deallocation functions" described at http://wg21.link/P2719
The proposal includes some more details but the basic change in
functionality is the addition of support for an additional implicit
parameter in operators `new` and `delete` to act as a type tag. Tag is
of type `std::type_identity<T>` where T is the concrete type being
allocated. So for example, a custom type specific allocator for `int`
say can be provided by the declaration of
void *operator new(std::type_identity<int>, size_t, std::align_val_t);
void operator delete(std::type_identity<int>, void*, size_t, std::align_val_t);
However this becomes more powerful by specifying templated declarations,
for example
template <typename T> void *operator new(std::type_identity<T>, size_t, std::align_val_t);
template <typename T> void operator delete(std::type_identity<T>, void*, size_t, std::align_val_t););
Where the operators being resolved will be the concrete type being
operated over (NB. A completely unconstrained global definition as above
is not recommended as it triggers many problems similar to a general
override of the global operators).
These type aware operators can be declared as either free functions or
in class, and can be specified with or without the other implicit
parameters, with overload resolution performed according to the existing
standard parameter prioritisation, only with type parameterised
operators having higher precedence than non-type aware operators. The
only exception is destroying_delete which for reasons discussed in the
paper we do not support type-aware variants by default.
The Pointer class already has the capability to be a function pointer,
but we still classifed function pointers as PT_FnPtr/FunctionPointer.
This means when converting from a Pointer to a FunctionPointer, we lost
the information of what the original Pointer pointed to.
This issue is very convoluted, but in essence, in the new version:
For a Pointer P that points to the root of a multidimensional, primitive
array:
`P.narrow()` does nothing.
`P.atIndex(0)` points `P[0]`
`P.atIndex(0).atIndex(0)` is the same as `P.atIndex(0)` (as before)
`P.atIndex(0).narrow().atIndex(0)` points to `P[0][0]`
`P.atIndex(0).narrow().narrow()` is the same as `P.atIndex(0).narrow()`.
C2y adds the `_Countof` operator which returns the number of elements in
an array. As with `sizeof`, `_Countof` either accepts a parenthesized
type name or an expression. Its operand must be (of) an array type. When
passed a constant-size array operand, the operator is a constant
expression which is valid for use as an integer constant expression.
This is being exposed as an extension in earlier C language modes, but
not in C++. C++ already has `std::extent` and `std::size` to cover these
needs, so the operator doesn't seem to get the user enough benefit to
warrant carrying this as an extension.
Fixes#102836