This patch changes the type of cost variables (for instance: Cost, ExtractCost,
SpillCost) to use InstructionCost.
This patch also changes the type of cost variables to InstructionCost in other
functions that use the result of getTreeCost()
This patch is part of a series of patches to use InstructionCost instead of
unsigned/int for the cost model functions.
See this thread for context:
http://lists.llvm.org/pipermail/llvm-dev/2020-November/146408.html
Depends on D91174
Differential Revision: https://reviews.llvm.org/D93049
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.
This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.
However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.
The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.
Differential Revision: https://reviews.llvm.org/D92059
Vector element size could be different for different store chains.
This patch prevents wrong computation of maximum number of elements
for that case.
Differential Revision: https://reviews.llvm.org/D93192
This is the first in a series of patches that attempts to migrate
existing cost instructions to return a new InstructionCost class
in place of a simple integer. This new class is intended to be
as light-weight and simple as possible, with a full range of
arithmetic and comparison operators that largely mirror the same
sets of operations on basic types, such as integers. The main
advantage to using an InstructionCost is that it can encode a
particular cost state in addition to a value. The initial
implementation only has two states - Normal and Invalid - but these
could be expanded over time if necessary. An invalid state can
be used to represent an unknown cost or an instruction that is
prohibitively expensive.
This patch adds the new class and changes the getInstructionCost
interface to return the new class. Other cost functions, such as
getUserCost, etc., will be migrated in future patches as I believe
this to be less disruptive. One benefit of this new class is that
it provides a way to unify many of the magic costs in the codebase
where the cost is set to a deliberately high number to prevent
optimisations taking place, e.g. vectorization. It also provides
a route to represent the extremely high, and unknown, cost of
scalarization of scalable vectors, which is not currently supported.
Differential Revision: https://reviews.llvm.org/D91174
For stores chain vectorization we choose the size of vector
elements to ensure we fit to minimum and maximum vector register
size for the number of elements given. This patch corrects vector
element size choosing the width of value truncated just before
storing instead of the width of value stored.
Fixes PR46983
Differential Revision: https://reviews.llvm.org/D92824
It is possible to merge reuse and reorder shuffles and reduce the total
cost of the ivectorization tree/number of final instructions.
Differential Revision: https://reviews.llvm.org/D92668
This might be a small improvement in readability, but the
real motivation is to make it easier to adapt the code to
deal with intrinsics like 'maxnum' and/or integer min/max.
There is potentially help in doing that with D92086, but
we might also just add specialized wrappers here to deal
with the expected patterns.
This patch replaces the attribute `unsigned VF` in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.
Differential Revision: https://reviews.llvm.org/D91532
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues:
1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality.
2. The counter atomics may not be fully cleaned up from the code stream eventually.
3. Extra work is needed for re-targeting.
We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality.
Let's now look at an example. Given the following LLVM IR:
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
br label %bb3
bb3:
ret void
}
```
The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID.
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86490
Instead of the first load. That works when vectorizing contiguous loads,
but not for gathers.
Fixes a miscompile introduced in fcad8d3635cff61a2749dcef94c0d51fa1e3e413.
For the scattered operands of load instructions it makes sense
to use gathering load intrinsic, which can lower to native instruction
for X86/AVX512 and ARM/SVE. This also enables building
vectorization tree with entries containing scattered operands.
The next step is to add scattered store.
Fixes PR47629 and PR47623
Differential Revision: https://reviews.llvm.org/D90445
This reverts the revert commit 408c4408facc3a79ee4ff7e9983cc972f797e176.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
This reverts the revert commit a1b53db32418cb6ed6f5b2054d15a22b5aa3aeb9.
This patch includes a fix for a reported issue, caused by
matchSelectPattern returning UMIN for selects of pointers in
some cases by looking to some connected casts.
For now, ensure integer instrinsics are only returned for selects of
ints or int vectors.
This reverts commit 19225704890632cd2552f41ada41600a20db1371.
This appears to cause a crash in the following example
a, b, c;
l() {
int e = a, f = l, g, h, i, j;
float *d = c, *k = b;
for (;;)
for (; g < f; g++) {
k[h] = d[i];
k[h - 1] = d[j];
h += e << 1;
i += e;
}
}
clang -cc1 -triple i386-unknown-linux-gnu -emit-obj -target-cpu pentium-m -O1 -vectorize-loops -vectorize-slp reduced.c
llvm::Type *llvm::Type::getWithNewBitWidth(unsigned int) const: Assertion `isIntOrIntVectorTy() && "Original type expected to be a vector of integers or a scalar integer."' failed.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
Some architectures do not have general vector select instructions (e.g.
AArch64). But some cmp/select patterns can be vectorized using other
instructions/intrinsics.
One example is using min/max instructions for certain patterns.
This patch updates the cost calculations for selects in the SLP
vectorizer to consider using min/max intrinsics.
This patch does not change SLP vectorizer's codegen itself to actually
generate those intrinsics, but relies on the backends to lower the
vector cmps & selects. This keeps things simple on the SLP side and
works well in practice for AArch64.
This exposes additional SLP vectorization opportunities in some
benchmarks on AArch64 (-O3 -flto).
Metric: SLP.NumVectorInstructions
Program base slp diff
test-suite...ications/JM/ldecod/ldecod.test 502.00 697.00 38.8%
test-suite...ications/JM/lencod/lencod.test 1023.00 1414.00 38.2%
test-suite...-typeset/consumer-typeset.test 56.00 65.00 16.1%
test-suite...6/464.h264ref/464.h264ref.test 804.00 822.00 2.2%
test-suite...006/453.povray/453.povray.test 3335.00 3357.00 0.7%
test-suite...CFP2000/177.mesa/177.mesa.test 2110.00 2121.00 0.5%
test-suite...:: External/Povray/povray.test 2378.00 2382.00 0.2%
Reviewed By: RKSimon, samparker
Differential Revision: https://reviews.llvm.org/D89969
These were only really used for 2 things. One was to check if the operand matches the phi if it exists. The other was for the createOp method to build the reduction.
For the first case we still have the operation we just need to know how to index its operands. So I've modified getLHS/getRHS to just use the opcode/kind to know how to find the right operands on an instruction that is now passed in.
For the other case we had to create an OperationData object to set the LHS/RHS values and copy the opcode/kind from another object. We would then just call createOp on that temporary object. Instead I've made LHS/RHS arguments to createOp and removed all these temporary objects.
Differential Revision: https://reviews.llvm.org/D88193
All of the callers already have an Instruction *. Many of them
from a dyn_cast.
Also update the OperationData constructor to use a Instruction&
to remove a dyn_cast and make it clear that the pointer is non-null.
Differential Revision: https://reviews.llvm.org/D88132
The implementation of gather() should be reduced too,
but this change by itself makes things a little clearer:
we don't try to gather to a different type or
number-of-values than whatever is passed in as the value
list itself.
If some leaves have the same instructions to be vectorized, we may
incorrectly evaluate the best order for the root node (it is built for the
vector of instructions without repeated instructions and, thus, has less
elements than the root node). In this case we just can not try to reorder
the tree + we may calculate the wrong number of nodes that requre the
same reordering.
For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
be reordered, the best order will be \<1, 0\>. We need to extend this
order for the root node. For the root node this order should look like
\<3, 0, 1, 2\>. This patch allows extension of the orders of the nodes
with the reused instructions.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D45263
If some leaves have the same instructions to be vectorized, we may
incorrectly evaluate the best order for the root node (it is built for the
vector of instructions without repeated instructions and, thus, has less
elements than the root node). In this case we just can not try to reorder
the tree + we may calculate the wrong number of nodes that requre the
same reordering.
For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
be reordered, the best order will be \<1, 0\>. We need to extend this
order for the root node. For the root node this order should look like
\<3, 0, 1, 2\>. This patch allows extension of the orders of the nodes
with the reused instructions.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D45263
This is one (small) part of improving PR41312:
https://llvm.org/PR41312
As shown there and in the smaller tests here, if we have some member of the
reduction values that does not match the others, we want to push it to the
end (bring the matching members forward and together).
In the regression tests, we have 5 candidates for the 4 slots of the reduction.
If the one "wrong" compare is grouped with the others, it prevents forming the
ideal v4i1 compare reduction.
Differential Revision: https://reviews.llvm.org/D87772