I have removed LoopVectorizationPlanner::setBestPlan, since this
function is quite aggressive because it deletes all other plans
except the one containing the <VF,UF> pair required. The code is
currently written to assume that all <VF,UF> pairs will live in the
same vplan. This is overly restrictive, since scalable VFs live in
different plans to fixed-width VFS. When we add support for
vectorising epilogue loops when the main loop uses scalable vectors
then we will the vplan for the main loop will be different to the
epilogue.
Instead I have added a new function called
LoopVectorizationPlanner::getBestPlanFor
that returns the best vplan for the <VF,UF> pair requested and leaves
all the vplans untouched. We then pass this best vplan to
LoopVectorizationPlanner::executePlan
which now takes an additional VPlanPtr argument.
Differential revision: https://reviews.llvm.org/D111125
Use RdxDesc->getOpcode instead of getUnderlingInstr()->getOpcode.
Move the code which finds Kind and IsOrdered to be outside the for loop
since neither of these change with the vector part.
Differential Revision: https://reviews.llvm.org/D112547
At the moment a dummy entry block is created at the beginning of VPlan
construction. This dummy block is later removed again.
This means it is not easy to identify the VPlan header block in a
general fashion, because during recipe creation it is the single
successor of the entry block, while later it is the entry block.
To make getting the header easier, just skip creating the dummy block.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111299
This simplifies the return value of addRuntimeCheck from a pair of
instructions to a single `Value *`.
The existing users of addRuntimeChecks were ignoring the first element
of the pair, hence there is not reason to track FirstInst and return
it.
Additionally all users of addRuntimeChecks use the second returned
`Instruction *` just as `Value *`, so there is no need to return an
`Instruction *`. Therefore there is no need to create a redundant
dummy `and X, true` instruction any longer.
Effectively this change should not impact the generated code because the
redundant AND will be folded by later optimizations. But it is easy to
avoid creating it in the first place and it allows more accurately
estimating the cost of the runtime checks.
Record widening decisions for memory operations within the planned recipes and
use the recorded decisions in code-gen rather than querying the cost model.
Differential Revision: https://reviews.llvm.org/D110479
This patch fixes another crash revealed by PR51614:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse (which is currently not supported).
Differential Revision: https://reviews.llvm.org/D108900
collectLoopScalars collects pointer induction updates in ScalarPtrs, assuming
that the instruction will be scalar after vectorization. This may crash later
in VPReplicateRecipe::execute() if there there is another user of the instruction
other than the Phi node which needs to be widened.
This changes collectLoopScalars so that if there are any other users of
Update other than a Phi node, it is not added to ScalarPtrs.
Reviewed By: david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D111294
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:
int r = a;
for (int i = 0; i < n; i++) {
if (src[i] > 3) {
r = b;
}
src[i] += 2;
}
We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.
The IR generated by clang typically looks like this:
%phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
...
%pred = icmp ugt i32 %val, i32 3
%phi.update = select i1 %pred, i32 %b, i32 %phi
We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
Transforms/LoopVectorize/select-cmp-predicated.ll
Transforms/LoopVectorize/select-cmp.ll
Differential Revision: https://reviews.llvm.org/D108136
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:
int r = a;
for (int i = 0; i < n; i++) {
if (src[i] > 3) {
r = b;
}
src[i] += 2;
}
We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.
The IR generated by clang typically looks like this:
%phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
...
%pred = icmp ugt i32 %val, i32 3
%phi.update = select i1 %pred, i32 %b, i32 %phi
We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
Transforms/LoopVectorize/select-cmp-predicated.ll
Transforms/LoopVectorize/select-cmp.ll
Differential Revision: https://reviews.llvm.org/D108136
This is analogous to D86156 (which preserves "lossy" BFI in loop
passes). Lossy means that the analysis preserved may not be up to date
with regards to new blocks that are added in loop passes, but BPI will
not contain stale pointers to basic blocks that are deleted by the loop
passes.
This is achieved through BasicBlockCallbackVH in BPI, which calls
eraseBlock that updates the data structures in BPI whenever a basic
block is deleted.
This patch does not have any changes in the upstream pipeline, since
none of the loop passes in the pipeline use BPI currently.
However, since BPI wasn't previously preserved in loop passes, the loop
predication pass was invoking BPI *on the entire
function* every time it ran in an LPM. This caused massive compile time
in our downstream LPM invocation which contained loop predication.
See updated test with an invocation of a loop-pipeline containing loop
predication and -debug-pass turned ON.
Reviewed-By: asbirlea, modimo
Differential Revision: https://reviews.llvm.org/D110438
This patch fixes the crash found by PR51614:
whenever doing tail folding, interleave groups must be considered under mask.
Another fix D108900 follows for targets that support masked loads and stores:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse - which is currently not supported; rather than (only) asserting when
computing cost and generating code.
Differential Revision: https://reviews.llvm.org/D108891
Added '-print-pipeline-passes' printing of parameters for those passes
declared with *_WITH_PARAMS macro in PassRegistry.def.
Note that it only prints the parameters declared inside *_WITH_PARAMS as
in a few cases there appear to be additional parameters not parsable.
The following passes are now covered (i.e. all of those with *_WITH_PARAMS in
PassRegistry.def).
LoopExtractorPass - loop-extract
HWAddressSanitizerPass - hwsan
EarlyCSEPass - early-cse
EntryExitInstrumenterPass - ee-instrument
LowerMatrixIntrinsicsPass - lower-matrix-intrinsics
LoopUnrollPass - loop-unroll
AddressSanitizerPass - asan
MemorySanitizerPass - msan
SimplifyCFGPass - simplifycfg
LoopVectorizePass - loop-vectorize
MergedLoadStoreMotionPass - mldst-motion
GVN - gvn
StackLifetimePrinterPass - print<stack-lifetime>
SimpleLoopUnswitchPass - simple-loop-unswitch
Differential Revision: https://reviews.llvm.org/D109310
This patch simply replaces any unsigned VFs with ElementCounts. It's
still NFC because at the moment epilogue vectorisation is disabled
when the main vector loop uses scalable vectors.
Differential Revision: https://reviews.llvm.org/D109364
Pass the access type to getPtrStride(), so it is not determined
from the pointer element type. Many cases still fetch the element
type at a higher level though, so this only partially addresses
the issue.
For SVE, when scalarising the PHI instruction the whole vector part is
generated as opposed to creating instructions for each lane for fixed-
width vectors. However, in some cases the lane values may be needed
later (e.g for a load instruction) so we still need to calculate
these values to avoid extractelement being called on the vector part.
Differential Revision: https://reviews.llvm.org/D109445
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
Store the used element type in the InductionDescriptor. For typed
pointers, it remains the pointer element type. For opaque pointers,
we always use an i8 element type, such that the step is a simple
offset.
A previous version of this patch instead tried to guess the element
type from an induction GEP, but this is not reliable, as the GEP
may be hidden (see @both in iv_outside_user.ll).
Differential Revision: https://reviews.llvm.org/D104795
After applying VPlan-to-VPlan transformations, using IR references to
query VPlan values may be incorrect, as the IR is not in sync with the
VPlan any longer.
To better detect such mis-matches, this patch introduces a new flag to
VPlans to indicate whether it is safe to query VPValues using IR values.
getVPValue is updated to assert if it is called when the flag indicates
it is not safe any longer.
There is an escape hatch via an extra argument, because there are 3
places that need to be fixed first. Those are
1. truncateToMinimalBitwidths
2. clearReductionWrapFlags
3. fixLCSSAPHIs
As a first step, this flag will help preventing new code from violating
this property.
Any suggestions with respect to naming very welcome!
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D108573
Adjusting the reduction recipes still relies on references to the
original IR, which can become outdated by the first-order recurrence
handling. Until reduction recipe construction does not require IR
references, move it before first-order recurrence handling, to prevent a
crash as exposed by D106653.
This reverts commit f4122398e7c195147cde120d070f9b72905d7c91 to
investigate a crash exposed by it.
The patch breaks building the code below with `clang -O2 --target=aarch64-linux`
int a;
double b, c;
void d() {
for (; a; a++) {
b += c;
c = a;
}
}
I have added a new TTI interface called enableOrderedReductions() that
controls whether or not ordered reductions should be enabled for a
given target. By default this returns false, whereas for AArch64 it
returns true and we rely upon the cost model to make sensible
vectorisation choices. It is still possible to override the new TTI
interface by setting the command line flag:
-force-ordered-reductions=true|false
I have added a new RUN line to show that we use ordered reductions by
default for SVE and Neon:
Transforms/LoopVectorize/AArch64/strict-fadd.ll
Transforms/LoopVectorize/AArch64/scalable-strict-fadd.ll
Differential Revision: https://reviews.llvm.org/D106653
Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D106277
LoopLoadElimination, LoopVersioning and LoopVectorize currently
fetch MemorySSA when construction LoopAccessAnalysis. However,
LoopAccessAnalysis does not actually use MemorySSA and we can pass
nullptr instead.
This saves one MemorySSA calculation in the default pipeline, and
thus improves compile-time.
Differential Revision: https://reviews.llvm.org/D108074
Previously we emitted a "does not support scalable vectors"
remark for all targets whenever vectorisation is attempted. This
pollutes the output for architectures that don't support scalable
vectors and is likely confusing to the user.
Instead this patch introduces a debug message that reports when
scalable vectorisation is allowed by the target and only issues
the previous remark when scalable vectorisation is specifically
requested, for example:
#pragma clang loop vectorize_width(2, scalable)
Differential Revision: https://reviews.llvm.org/D108028
Teach LV to use masked-store to support interleave-store-group with
gaps (instead of scatters/scalarization).
The symmetric case of using masked-load to support
interleaved-load-group with gaps was introduced a while ago, by
https://reviews.llvm.org/D53668; This patch completes the store-scenario
leftover from D53668, and solves PR50566.
Reviewed by: Ayal Zaks
Differential Revision: https://reviews.llvm.org/D104750
After refactoring the phi recipes, we can now iterate over all header
phis in a VPlan to detect reductions when it comes to fixing them up
when tail folding.
This reduces the coupling with the cost model & legal by using the
information directly available in VPlan. It also removes a call to
getOrAddVPValue, which references the original IR value which may
become outdated after VPlan transformations.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100102
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:
1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.
Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:
1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.
I have updated the assume test for fixed width, since we now treat it
as uniform:
Transforms/LoopVectorize/assume.ll
I've also added new scalable vectorisation tests for other intriniscs:
Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll
Differential Revision: https://reviews.llvm.org/D107284
All information to fix-up the reduction phi nodes in the vectorized loop
is available in VPlan now. This patch moves the code to do so, to make
this clearer. Fixing up the loop exit value still relies on other
information and remains outside of VPlan for now.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100113
Since all operands to ExtractValue must be loop-invariant when we deem
the loop vectorizable, we can consider ExtractValue to be uniform.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D107286
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:
1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.
Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:
1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.
I have updated the assume test for fixed width, since we now treat it
as uniform:
Transforms/LoopVectorize/assume.ll
I've also added new scalable vectorisation tests for other intriniscs:
Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll
Differential Revision: https://reviews.llvm.org/D107284
This change wasn't strictly necessary for D106164 and could be removed.
This patch addresses the post-commit comments from @fhahn on D106164, and
also changes sve-widen-gep.ll to use the same IR test as shown in
pointer-induction.ll.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D106878
I'm renaming the flag because a future patch will add a new
enableOrderedReductions() TTI interface and so the meaning of this
flag will change to be one of forcing the target to enable/disable
them. Also, since other places in LoopVectorize.cpp use the word
'Ordered' instead of 'strict' I changed the flag to match.
Differential Revision: https://reviews.llvm.org/D107264
This patch updates VPInterleaveRecipe::print to print the actual defined
VPValues for load groups and the store VPValue operands for store
groups.
The IR references may become outdated while transforming the VPlan and
the defined and stored VPValues always are up-to-date.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D107223
As suggested in D105008, move the code that fixes up the backedge value
for first order recurrences to VPlan::execute.
Now all that remains in fixFirstOrderRecurrences is the code responsible
for creating the exit values in the middle block.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D106244
This makes a couple of changes to the costing of MLA reduction patterns,
to more accurately cost various patterns that can come up from
vectorization.
- The Arm implementation of getExtendedAddReductionCost is altered to
only provide costs for legal or smaller types. Larger than legal types
need to be split, which currently does not work very well, especially
for predicated reductions where the predicate may be legal but needs to
be split. Currently we limit it to legal or smaller input types.
- The getReductionPatternCost has learnt that reduce(ext(mul(ext, ext))
is a pattern that can come up, and can be treated the same as
reduce(mul(ext, ext)) providing the extension types match.
- And it has been adjusted to not count the ext in reduce(mul(ext, ext))
as part of a reduce(mul) pattern.
Together these changes help to more accurately cost the mla reductions
in cases such as where the extend types don't match or the extend
opcodes are different, picking better vector factors that don't result
in expanded reductions.
Differential Revision: https://reviews.llvm.org/D106166
Consider the following loop:
void foo(float *dst, float *src, int N) {
for (int i = 0; i < N; i++) {
dst[i] = 0.0;
for (int j = 0; j < N; j++) {
dst[i] += src[(i * N) + j];
}
}
}
When we are not building with -Ofast we may attempt to vectorise the
inner loop using ordered reductions instead. In addition we also try
to select an appropriate interleave count for the inner loop. However,
when choosing a VF=1 the inner loop will be scalar and there is existing
code in selectInterleaveCount that limits the interleave count to 2
for reductions due to concerns about increasing the critical path.
For ordered reductions this problem is even worse due to the additional
data dependency, and so I've added code to simply disable interleaving
for scalar ordered reductions for now.
Test added here:
Transforms/LoopVectorize/AArch64/strict-fadd-vf1.ll
Differential Revision: https://reviews.llvm.org/D106646
The loop vectorizer may decide to use tail folding when the trip-count
is low. When that happens, scalable VFs are no longer a candidate,
since tail folding/predication is not yet supported for scalable vectors.
This can be re-enabled in a future patch.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106657
Invalid costs can be used to avoid vectorization with a given VF, which is
used for scalable vectors to avoid things that the code-generator cannot
handle. If we override the cost using the -force-target-instruction-cost
option of the LV, we would override this mechanism, rendering the flag useless.
This change ensures the cost is only overriden when the original cost that
was calculated is valid. That allows the flag to be used in combination
with the -scalable-vectorization option.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106677
Scalarization for scalable vectors is not (yet) supported, so the
LV discards a VF when scalarization is chosen as the widening
decision. It should therefore not assert that the VF is not scalable
when it computes the decision to scalarize.
The code can get here when both the interleave-cost, gather/scatter cost
and scalarization-cost are all illegal. This may e.g. happen for SVE
when the VF=1, to avoid generating `<vscale x 1 x eltty>` types that
the code-generator cannot yet handle.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106656