36 Commits

Author SHA1 Message Date
serge-sans-paille
989f1c72e0 Cleanup codegen includes
This is a (fixed) recommit of https://reviews.llvm.org/D121169

after:  1061034926
before: 1063332844

Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D121681
2022-03-16 08:43:00 +01:00
Nico Weber
a278250b0f Revert "Cleanup codegen includes"
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
2022-03-10 07:59:22 -05:00
serge-sans-paille
7f230feeea Cleanup codegen includes
after:  1061034926
before: 1063332844

Differential Revision: https://reviews.llvm.org/D121169
2022-03-10 10:00:30 +01:00
Heejin Ahn
4f9b839772 [WebAssembly] Make EH/SjLj vars unconditionally thread local
This makes three thread local variables (`__THREW__`, `__threwValue`,
and `__wasm_lpad_context`) unconditionally thread local. If the target
doesn't support TLS, they will be downgraded to normal variables in
`stripThreadLocals`. This makes the object not linkable with other
objects using shared memory, which is what we intend here; these
variables should be thread local when used with shared memory. This is
what we initially tried in D88262.

But D88323 changed this: It only created these variables when threads
were supported, because `__THREW__` and `__threwValue` were always
generated even if Emscripten EH/SjLj was not used, making all objects
built without threads not linkable with shared memory, which was too
restrictive. But sometimes this is not safe. If we build an object using
variables such as `__THREW__` without threads, it can be linked to other
objects using shared memory, because the original object's `__THREW__`
was not created thread local to begin with.

So this CL basically reverts D88323 with some additional improvements:
- This checks each of the functions and global variables created within
  `LowerEmscriptenEHSjLj` pass and removes it if it's not used at the
  end of the pass. So only modules using those variables will be
  affected.
- Moves `CoalesceFeaturesAndStripAtomics` and `AtomicExpand` passes
  after all other IR pasess that can create thread local variables. It
  is not sufficient to move them to the end of `addIRPasses`, because
  `__wasm_lpad_context` is created in `WasmEHPrepare`, which runs inside
  `addPassesToHandleExceptions`, which runs before `addISelPrepare`. So
  we override `addISelPrepare` and move atomic/TLS stripping and
  expanding passes there.

This also removes merges `TLS` and `NO-TLS` FileCheck lines into one
`CHECK` line, because in the bitcode level we always create them as
thread local. Also some function declarations are deleted `CHECK` lines
because they are unused.

Reviewed By: tlively, sbc100

Differential Revision: https://reviews.llvm.org/D120013
2022-02-17 16:04:18 -08:00
Heejin Ahn
c60d822965 [WebAssembly] Make __wasm_lpad_context thread-local
This makes `__wasm_lpad_context`, a struct that is used as a
communication channel between compiler-generated code and personality
function in libunwind, thread local. The library code will be changed to
thread local in the emscripten side.

Reviewed By: sbc100, tlively

Differential Revision: https://reviews.llvm.org/D119803
2022-02-16 15:56:38 -08:00
Heejin Ahn
2f88a30ca6 [WebAssembly] Extract longjmp handling in EmSjLj to a function (NFC)
Emscripten SjLj and (soon-to-be-added) Wasm SjLj transformation share
many steps:
1. Initialize `setjmpTable` and `setjmpTableSize` in the entry BB
2. Handle `setjmp` callsites
3. Handle `longjmp` callsites
4. Cleanup and update SSA

1, 3, and 4 are identical for Emscripten SjLj and Wasm SjLj. Only the
step 2 is different. This CL extracts the current Emscripten SjLj's
longjmp callsites handling into a function. The reason to make this a
separate CL is, without this, the diff tool cannot compare things well
in the presence of moved code and added code in the followup Wasm SjLj
CL, and it ends up mixing them together, making the diff unreadable.

Also fixes some typos and variable names. So far we've been calling the
buffer argument to `setjmp` and `longjmp` `jmpbuf`, but the name used in
the man page for those functions is `env`, so updated them to be
consistent.

Reviewed By: tlively

Differential Revision: https://reviews.llvm.org/D108728
2021-08-25 15:45:38 -07:00
Heejin Ahn
c2c9a3fd9c [WebAssembly] Rename wasm.catch.exn intrinsic back to wasm.catch
The plan was to use `wasm.catch.exn` intrinsic to catch exceptions and
add `wasm.catch.longjmp` intrinsic, that returns two values (setjmp
buffer and return value), later to catch longjmps. But because we
decided not to use multivalue support at the moment, we are going to use
one intrinsic that returns a single value for both exceptions and
longjmps. And even if it's not for that, I now think the naming of
`wasm.catch.exn` is a little weird, because the intrinsic can still take
a tag immediate, which means it can be used for anything, not only
exceptions, as long as that returns a single value.

This partially reverts D107405.

Reviewed By: tlively

Differential Revision: https://reviews.llvm.org/D108683
2021-08-25 14:19:22 -07:00
Heejin Ahn
9bd02c433b [WebAssembly] Misc. cosmetic changes in EH (NFC)
- Rename `wasm.catch` intrinsic to `wasm.catch.exn`, because we are
  planning to add a separate `wasm.catch.longjmp` intrinsic which
  returns two values.
- Rename several variables
- Remove an unnecessary parameter from `canLongjmp` and `isEmAsmCall`
  from LowerEmscriptenEHSjLj pass
- Add `-verify-machineinstrs` in a test for a safety measure
- Add more comments + fix some errors in comments
- Replace `std::vector` with `SmallVector` for cases likely with small
  number of elements
- Renamed `EnableEH`/`EnableSjLj` to `EnableEmEH`/`EnableEmSjLj`: We are
  soon going to add `EnableWasmSjLj`, so this makes the distincion
  clearer

Reviewed By: tlively

Differential Revision: https://reviews.llvm.org/D107405
2021-08-03 21:03:46 -07:00
Heejin Ahn
a48ee9f255 [WebAssembly] Remove dominator dependency in WasmEHPrepare (NFC)
Dominator trees were previously used for an optimization related to
`wasm.lsda` but the optimization was removed in D97309. Currently
dominators are not doing anything in this pass. Also removes some
`include` lines without which it compiles.

Reviewed By: tlively

Differential Revision: https://reviews.llvm.org/D106811
2021-07-26 14:45:13 -07:00
Heejin Ahn
561abd83ff [WebAssembly] Disable uses of __clang_call_terminate
Background:

Wasm EH, while using Windows EH (catchpad/cleanuppad based) IR, uses
Itanium-based libraries and ABIs with some modifications.

`__clang_call_terminate` is a wrapper generated in Clang's Itanium C++
ABI implementation. It contains this code, in C-style pseudocode:
```
void __clang_call_terminate(void *exn) {
  __cxa_begin_catch(exn);
  std::terminate();
}
```
So this function is a wrapper to call `__cxa_begin_catch` on the
exception pointer before termination.

In Itanium ABI, this function is called when another exception is thrown
while processing an exception. The pointer for this second, violating
exception is passed as the argument of this `__clang_call_terminate`,
which calls `__cxa_begin_catch` with that pointer and calls
`std::terminate` to terminate the program.

The spec (https://libcxxabi.llvm.org/spec.html) for `__cxa_begin_catch`
says,
```
When the personality routine encounters a termination condition, it
will call __cxa_begin_catch() to mark the exception as handled and then
call terminate(), which shall not return to its caller.
```

In wasm EH's Clang implementation, this function is called from
cleanuppads that terminates the program, which we also call terminate
pads. Cleanuppads normally don't access the thrown exception and the
wasm backend converts them to `catch_all` blocks. But because we need
the exception pointer in this cleanuppad, we generate
`wasm.get.exception` intrinsic (which will eventually be lowered to
`catch` instruction) as we do in the catchpads. But because terminate
pads are cleanup pads and should run even when a foreign exception is
thrown, so what we have been doing is:
1. In `WebAssemblyLateEHPrepare::ensureSingleBBTermPads()`, we make sure
terminate pads are in this simple shape:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
```
2. In `WebAssemblyHandleEHTerminatePads` pass at the end of the
pipeline, we attach a `catch_all` to terminate pads, so they will be in
this form:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
catch_all
call @std::terminate()
unreachable
```
In `catch_all` part, we don't have the exception pointer, so we call
`std::terminate()` directly. The reason we ran HandleEHTerminatePads at
the end of the pipeline, separate from LateEHPrepare, was it was
convenient to assume there was only a single `catch` part per `try`
during CFGSort and CFGStackify.

---

Problem:

While it thinks terminate pads could have been possibly split or calls
to `__clang_call_terminate` could have been duplicated,
`WebAssemblyLateEHPrepare::ensureSingleBBTermPads()` assumes terminate
pads contain no more than calls to `__clang_call_terminate` and
`unreachable` instruction. I assumed that because in LLVM very limited
forms of transformations are done to catchpads and cleanuppads to
maintain the scoping structure. But it turned out to be incorrect;
passes can merge cleanuppads into one, including terminate pads, as long
as the new code has a correct scoping structure. One pass that does this
I observed was `SimplifyCFG`, but there can be more. After this
transformation, a single cleanuppad can contain any number of other
instructions with the call to `__clang_call_terminate` and can span many
BBs. It wouldn't be practical to duplicate all these BBs within the
cleanuppad to generate the equivalent `catch_all` blocks, only with
calls to `__clang_call_terminate` replaced by calls to `std::terminate`.

Unless we do more complicated transformation to split those calls to
`__clang_call_terminate` into a separate cleanuppad, it is tricky to
solve.

---

Solution (?):

This CL just disables the generation and use of `__clang_call_terminate`
and calls `std::terminate()` directly in its place.

The possible downside of this approach can be, because the Itanium ABI
intended to "mark" the violating exception handled, we don't do that
anymore. What `__cxa_begin_catch` actually does is increment the
exception's handler count and decrement the uncaught exception count,
which in my opinion do not matter much given that we are about to
terminate the program anyway. Also it does not affect info like stack
traces that can be possibly shown to developers.

And while we use a variant of Itanium EH ABI, we can make some
deviations if we choose to; we are already different in that in the
current version of the EH spec we don't support two-phase unwinding. We
can possibly consider a more complicated transformation later to
reenable this, but I don't think that has high priority.

Changes in this CL contains:
- In Clang, we don't generate a call to `wasm.get.exception()` intrinsic
  and `__clang_call_terminate` function in terminate pads anymore; we
  simply generate calls to `std::terminate()`, which is the default
  implementation of `CGCXXABI::emitTerminateForUnexpectedException`.
- Remove `WebAssembly::ensureSingleBBTermPads() function and
  `WebAssemblyHandleEHTerminatePads` pass, because terminate pads are
  already `catch_all` now (because they don't need the exception
  pointer) and we don't need these transformations anymore.
- Change tests to use `std::terminate` directly. Also removes tests that
  tested `LateEHPrepare::ensureSingleBBTermPads` and
  `HandleEHTerminatePads` pass.
- Drive-by fix: Add some function attributes to EH intrinsic
  declarations

Fixes https://github.com/emscripten-core/emscripten/issues/13582.

Reviewed By: dschuff, tlively

Differential Revision: https://reviews.llvm.org/D97834
2021-03-04 14:26:35 -08:00
Heejin Ahn
445f4e7484 [WebAssembly] Disable wasm.lsda() optimization in WasmEHPrepare
In every catchpad except `catch (...)`, we add a call to
`_Unwind_CallPersonality`, which is a wapper to call the personality
function. (In most of other Itanium-based architectures the call is done
from libunwind, but in wasm we don't have the control over the VM.)
Because the personatlity function is called to figure out whether the
current exception is a type we should catch, such as `int` or
`SomeClass&`, `catch (...)` does not need the personality function call.
For the same reason, all cleanuppads don't need it.

When we call `_Unwind_CallPersonality`, we store some necessary info in
a data structure called `__wasm_lpad_context` of type
`_Unwind_LandingPadContext`, which is defined  in the wasm's port of
libunwind in Emscripten. Also the personality wrapper function returns
some info (selector and the caught pointer) in that data structure, so
it is used as a medium for communication.

One of the info we need to store is the address for LSDA info for the
current function. `wasm.lsda()` intrinsic returns that address. (This
intrinsic will be lowered to a symbol that points to the LSDA address.)
The simpliest thing is call `wasm.lsda()` every time we need to call
`_Unwind_CallPersonality` and store that info in `__wasm_lpad_context`
data structure. But we tried to be better than that (D77423 and some
more previous CLs), so if catchpad A dominates catchpad B and catchpad A
is not `catch (...)`, we didn't insert `wasm.lsda()` call in catchpad B,
thinking that the LSDA address is the same for a single function and we
already visited catchpad A and `__wasm_lpad_context.lsda` field would
already have that value.

But this can be incorrect if there is a call to another function, which
also can have the personality function and LSDA, between catchpad A and
catchpad B, because `__wasm_lpad_context` is a globally defined
structure and the callee function will overwrite its `lsda` field.

So in this CL we don't try to do any optimizaions on adding
`wasm.lsda()` call; we store the result of `wasm.lsda()` every time we
call `_Unwind_CallPersonality`. We can do some complicated analysis,
like checking if there is a function call between the dominating
catchpad and the current catchpad, but at this time it seems overkill.

This deletes three tests because they all tested `wasm.ldsa()` call
optimization.

Fixes https://github.com/emscripten-core/emscripten/issues/13548.

Reviewed By: tlively

Differential Revision: https://reviews.llvm.org/D97309
2021-02-23 14:38:59 -08:00
Heejin Ahn
a08e609d2e [WebAssembly] Rename methods in WasmEHFuncInfo (NFC)
This renames variable and method names in `WasmEHFuncInfo` class to be
simpler and clearer. For example, unwind destinations are EH pads by
definition so it doesn't necessarily need to be included in every method
name. Also I am planning to add the reverse mapping in a later CL,
something like `UnwindDestToSrc`, so this renaming will make meanings
clearer.

Reviewed By: dschuff

Differential Revision: https://reviews.llvm.org/D97173
2021-02-22 12:16:11 -08:00
Heejin Ahn
9724c3cff4 [WebAssembly] Update WasmEHPrepare for the new spec
Clang generates `wasm.get.exception` and `wasm.get.ehselector`
intrinsics, which respectively return a caught exception value (a
pointer to some C++ exception struct) and a selector (an integer value
that tells which C++ `catch` clause the current exception matches, or
does not match any).

WasmEHPrepare is a pass that does some IR-level preparation before
instruction selection. Previously one of things we did in this pass was
to convert `wasm.get.exception` intrinsic calls to
`wasm.extract.exception` intrinsics. Their semantics were the same
except `wasm.extract.exception` did not have a token argument. We
maintained these two separate intrinsics with the same semantics because
instruction selection couldn't handle token arguments. This
`wasm.extract.exception` intrinsic was later converted to
`extract_exception` instruction in instruction selection, which was a
pseudo instruction to implement `br_on_exn`. Because `br_on_exn` pushed
an extracted value onto the value stack after the `end` instruction of a
`block`, but LLVM does not have a way of modeling that kind of behavior,
so this pseudo instruction was used to pull an extracted value out of
thin air, like this:
```
block $l0
  ...
  br_on_exn $cpp_exception $l0
  ...
end
extract_exception ;; pushes values onto the stack
```

In the new spec, we don't need this pseudo instruction anymore because
`catch` itself returns a value and we don't have `br_on_exn` anymore. In
the spec `catch` returns multiple values (like `br_on_exn`), but here we
assume it only returns a single i32, which is sufficient to support C++.

So this renames `wasm.get.exception` intrinsic to `wasm.catch`. Because
this CL does not yet contain instruction selection for `wasm.catch`
intrinsic, all `RUN` lines in exception.ll, eh-lsda.ll, and
cfg-stackify-eh.ll, and a single `RUN` line in wasm-eh.cpp (which is an
end-to-end test from C++ source to assembly) fail. So this CL
temporarily disables those `RUN` lines, and for those test files without
any valid remaining `RUN` lines, adds a dummy `RUN` line to make them
pass. These tests will be reenabled in later CLs.

Reviewed By: dschuff, tlively

Differential Revision: https://reviews.llvm.org/D94039
2021-01-08 23:38:26 -08:00
Kazu Hirata
7bc76fd0ec [CodeGen] Construct SmallVector with iterator ranges (NFC) 2020-12-31 09:39:11 -08:00
Fangrui Song
2d03c8e2c8 [CodeGen] Delete 4 unused declarations 2020-12-06 15:02:18 -08:00
Kazu Hirata
85d6af393c [CodeGen] Use pred_empty (NFC) 2020-11-22 22:16:13 -08:00
Craig Topper
a58b62b4a2 [IR] Replace all uses of CallBase::getCalledValue() with getCalledOperand().
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().

I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.

Differential Revision: https://reviews.llvm.org/D78882
2020-04-27 22:17:03 -07:00
Heejin Ahn
fc5d8b672b [WebAssembly] Fix a sanitizer error in WasmEHPrepare
Summary:
D77423 started using a dominator tree in WasmEHPrepare, but we deleted
BBs in `prepareThrows` before we used the domtree in `prepareEHPads`,
and those CFG changes were not reflected in the domtree. This uses
`DomTreeUpdater` to make sure we update the domtree every time we delete
BBs from the CFG. This fixes ubsan/msan/expensive_check errors caught in
LLVM buildbots.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77465
2020-04-04 09:57:07 -07:00
Heejin Ahn
2e9839729d [WebAssembly] Fix wasm.lsda() optimization in WasmEHPrepare
Summary:
When we insert a call to the personality function wrapper
(`_Unwind_CallPersonality`) for a catch pad, we store some necessary
info in `__wasm_lpad_context` struct and pass it. One of the info is the
LSDA address for the function. For this, we insert a call to
`wasm.lsda()`, which will be lowered down to the address of LSDA, and
store it in a field in `__wasm_lpad_context`.

There are exceptions to this personality call insertion: catchpads for
`catch (...)` and cleanuppads (for destructors) don't need personality
function calls, because we don't need to figure out whether the current
exception should be caught or not. (They always should.)

There was a little optimization to `wasm.lsda()` call insertion. Because
the LSDA address is the same throughout a function, we don't need to
insert a store of `wasm.lsda()` return value in every catchpad. For
example:
```
try {
  foo();
} catch (int) {
  // wasm.lsda() call and a store are inserted here, like, in
  // pseudocode,
  // %lsda = wasm.lsda();
  // store %lsda to a field in __wasm_lpad_context
  try {
    foo();
  } catch (int) {
    // We don't need to insert the wasm.lsda() and store again, because
    // to arrive here, we have already stored the LSDA address to
    // __wasm_lpad_context in the outer catch.
  }
}
```
So the previous algorithm checked if the current catch has a parent EH
pad, we didn't insert a call to `wasm.lsda()` and its store.

But this was incorrect, because what if the outer catch is `catch (...)`
or a cleanuppad?
```
try {
  foo();
} catch (...) {
  // wasm.lsda() call and a store are NOT inserted here
  try {
    foo();
  } catch (int) {
    // We need wasm.lsda() here!
  }
}
```
In this case we need to insert `wasm.lsda()` in the inner catchpad,
because the outer catchpad does not have one.

To minimize the number of inserted `wasm.lsda()` calls and stores, we
need a way to figure out whether we have encountered `wasm.lsda()` call
in any of EH pads that dominates the current EH pad. To figure that
out, we now visit EH pads in BFS order in the dominator tree so that we
visit parent BBs first before visiting its child BBs in the domtree.

We keep a set named `ExecutedLSDA`, which basically means "Do we have
`wasm.lsda()` either in the current EH pad or any of its parent EH
pads in the dominator tree?". This is to prevent scanning the domtree up
to the root in the worst case every time we examine an EH pad: each EH
pad only needs to examine its immediate parent EH pad.

- If any of its parent EH pads in the domtree has `wasm.lsda()`, this
  means we don't need `wasm.lsda()` in the current EH pad. We also insert
  the current EH pad in `ExecutedLSDA` set.
- If none of its parent EH pad has `wasm.lsda()`
  - If the current EH pad is a `catch (...)` or a cleanuppad, done.
  - If the current EH pad is neither a `catch (...)` nor a cleanuppad,
    add `wasm.lsda()` and the store in the current EH pad, and add the
    current EH pad to `ExecutedLSDA` set.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77423
2020-04-04 07:02:50 -07:00
Reid Kleckner
5d986953c8 [IR] Split out target specific intrinsic enums into separate headers
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
  Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
  object file size.
- Incremental step towards decoupling target intrinsics.

The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.

Part of PR34259

Reviewers: efriedma, echristo, MaskRay

Reviewed By: echristo, MaskRay

Differential Revision: https://reviews.llvm.org/D71320
2019-12-11 18:02:14 -08:00
Reid Kleckner
05da2fe521 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00
Heejin Ahn
66ce419468 [WebAssembly] Make rethrow take an except_ref type argument
Summary:
In the new wasm EH proposal, `rethrow` takes an `except_ref` argument.
This change was missing in r352598.

This patch adds `llvm.wasm.rethrow.in.catch` intrinsic. This is an
intrinsic that's gonna eventually be lowered to wasm `rethrow`
instruction, but this intrinsic can appear only within a catchpad or a
cleanuppad scope. Also this intrinsic needs to be invokable - otherwise
EH pad successor for it will not be correctly generated in clang.

This also adds lowering logic for this intrinsic in
`SelectionDAGBuilder::visitInvoke`. This routine is basically a
specialized and simplified version of
`SelectionDAGBuilder::visitTargetIntrinsic`, but we can't use it
because if is only for `CallInst`s.

This deletes the previous `llvm.wasm.rethrow` intrinsic and related
tests, which was meant to be used within a `__cxa_rethrow` library
function. Turned out this needs some more logic, so the intrinsic for
this purpose will be added later.

LateEHPrepare takes a result value of `catch` and inserts it into
matching `rethrow` as an argument.

`RETHROW_IN_CATCH` is a pseudo instruction that serves as a link between
`llvm.wasm.rethrow.in.catch` and the real wasm `rethrow` instruction. To
generate a `rethrow` instruction, we need an `except_ref` argument,
which is generated from `catch` instruction. But `catch` instrutions are
added in LateEHPrepare pass, so we use `RETHROW_IN_CATCH`, which takes
no argument, until we are able to correctly lower it to `rethrow` in
LateEHPrepare.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59352

llvm-svn: 356316
2019-03-16 05:38:57 +00:00
Heejin Ahn
195a62e9ae [WebAssembly] Delete ThrowUnwindDest map from WasmEHFuncInfo
Summary:
Before when we implemented the first EH proposal, 'catch <tag>'
instruction may not catch an exception so there were multiple EH pads an
exception can unwind to. That means a BB could have multiple EH pad
successors.

Now after we switched to the new proposal, every 'catch' instruction
catches an exception, and there is only one catchpad per catchswitch, so
we at most have one EH pad successor, making `ThrowUnwindDest` map in
`WasmEHInfo` unnecessary.

Keeping `ThrowUnwindDest` map in `WasmEHInfo` has its own problems,
because other optimization passes can split a BB that contains possibly
throwing calls (previously invokes), and we have to update the map every
time that happens, which is not easy for common CodeGen passes.

This also correctly updates successor info in LateEHPrepare when we add
a rethrow instruction.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D58486

llvm-svn: 355296
2019-03-03 22:35:56 +00:00
James Y Knight
14359ef1b6 [opaque pointer types] Pass value type to LoadInst creation.
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.

Differential Revision: https://reviews.llvm.org/D57172

llvm-svn: 352911
2019-02-01 20:44:24 +00:00
James Y Knight
13680223b9 [opaque pointer types] Add a FunctionCallee wrapper type, and use it.
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.

Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.

Then:
- update the CallInst/InvokeInst instruction creation functions to
  take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.

One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.

However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)

Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.

Differential Revision: https://reviews.llvm.org/D57315

llvm-svn: 352827
2019-02-01 02:28:03 +00:00
James Y Knight
fadf25068e Revert "[opaque pointer types] Add a FunctionCallee wrapper type, and use it."
This reverts commit f47d6b38c7a61d50db4566b02719de05492dcef1 (r352791).

Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.

llvm-svn: 352800
2019-01-31 21:51:58 +00:00
James Y Knight
f47d6b38c7 [opaque pointer types] Add a FunctionCallee wrapper type, and use it.
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.

Then:
- update the CallInst/InvokeInst instruction creation functions to
  take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.

One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.

However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)

Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.

Differential Revision: https://reviews.llvm.org/D57315

llvm-svn: 352791
2019-01-31 20:35:56 +00:00
Heejin Ahn
d6f487863d [WebAssembly] Exception handling: Switch to the new proposal
Summary:
This switches the EH implementation to the new proposal:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
(The previous proposal was
 https://github.com/WebAssembly/exception-handling/blob/master/proposals/old/Exceptions.md)

- Instruction changes
  - Now we have one single `catch` instruction that returns a except_ref
    value
  - `throw` now can take variable number of operations
  - `rethrow` does not have 'depth' argument anymore
  - `br_on_exn` queries an except_ref to see if it matches the tag and
    branches to the given label if true.
  - `extract_exception` is a pseudo instruction that simulates popping
    values from wasm stack. This is to make `br_on_exn`, a very special
    instruction, work: `br_on_exn` puts values onto the stack only if it
    is taken, and the # of values can vay depending on the tag.

- Now there's only one `catch` per `try`, this patch removes all special
  handling for terminate pad with a call to `__clang_call_terminate`.
  Before it was the only case there are two catch clauses (a normal
  `catch` and `catch_all` per `try`).

- Make `rethrow` act as a terminator like `throw`. This splits BB after
  `rethrow` in WasmEHPrepare, and deletes an unnecessary `unreachable`
  after `rethrow` in LateEHPrepare.

- Now we stop at all catchpads (because we add wasm `catch` instruction
  that catches all exceptions), this creates new
  `findWasmUnwindDestinations` function in SelectionDAGBuilder.

- Now we use `br_on_exn` instrution to figure out if an except_ref
  matches the current tag or not, LateEHPrepare generates this sequence
  for catch pads:
```
  catch
  block i32
  br_on_exn $__cpp_exception
  end_block
  extract_exception
```

- Branch analysis for `br_on_exn` in WebAssemblyInstrInfo

- Other various misc. changes to switch to the new proposal.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits

Differential Revision: https://reviews.llvm.org/D57134

llvm-svn: 352598
2019-01-30 03:21:57 +00:00
Chandler Carruth
2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Heejin Ahn
095796a391 [WebAssembly] Split BBs after throw instructions
Summary:
`throw` instruction is a terminator in wasm, but BBs were not splitted
after `throw` instructions, causing machine instruction verifier to
fail.

This patch
- Splits BBs after `throw` instructions in WasmEHPrepare and adding an
  unreachable instruction after `throw`, which will be deleted in
  LateEHPrepare pass
- Refactors WasmEHPrepare into two member functions
- Changes the semantics of `eraseBBsAndChildren` in LateEHPrepare pass
  to match that of WasmEHPrepare pass, which is newly added. Now
  `eraseBBsAndChildren` does not delete BBs with remaining predecessors.
- Fixes style nits, making static function names conform to clang-tidy
- Re-enables the test temporarily disabled by rL346840 && rL346845

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits

Differential Revision: https://reviews.llvm.org/D54571

llvm-svn: 347003
2018-11-16 00:47:18 +00:00
Heejin Ahn
24faf859e5 Reland "[WebAssembly] LSDA info generation"
Summary:
This adds support for LSDA (exception table) generation for wasm EH.
Wasm EH mostly follows the structure of Itanium-style exception tables,
with one exception: a call site table entry in wasm EH corresponds to
not a call site but a landing pad.

In wasm EH, the VM is responsible for stack unwinding. After an
exception occurs and the stack is unwound, the control flow is
transferred to wasm 'catch' instruction by the VM, after which the
personality function is called from the compiler-generated code. (Refer
to WasmEHPrepare pass for more information on this part.)

This patch:
- Changes wasm.landingpad.index intrinsic to take a token argument, to
make this 1:1 match with a catchpad instruction
- Stores landingpad index info and catch type info MachineFunction in
before instruction selection
- Lowers wasm.lsda intrinsic to an MCSymbol pointing to the start of an
exception table
- Adds WasmException class with overridden methods for table generation
- Adds support for LSDA section in Wasm object writer

Reviewers: dschuff, sbc100, rnk

Subscribers: mgorny, jgravelle-google, sunfish, llvm-commits

Differential Revision: https://reviews.llvm.org/D52748

llvm-svn: 345345
2018-10-25 23:55:10 +00:00
Krasimir Georgiev
547d824da6 Revert "[WebAssembly] LSDA info generation"
This reverts commit r344575.
Newly introduced test eh-lsda.ll.test fails with use-after-free under
ASAN build.

llvm-svn: 344639
2018-10-16 18:50:09 +00:00
Heejin Ahn
0981eaab47 [WebAssembly] LSDA info generation
Summary:
This adds support for LSDA (exception table) generation for wasm EH.
Wasm EH mostly follows the structure of Itanium-style exception tables,
with one exception: a call site table entry in wasm EH corresponds to
not a call site but a landing pad.

In wasm EH, the VM is responsible for stack unwinding. After an
exception occurs and the stack is unwound, the control flow is
transferred to wasm 'catch' instruction by the VM, after which the
personality function is called from the compiler-generated code. (Refer
to WasmEHPrepare pass for more information on this part.)

This patch:
- Changes wasm.landingpad.index intrinsic to take a token argument, to
make this 1:1 match with a catchpad instruction
- Stores landingpad index info and catch type info MachineFunction in
before instruction selection
- Lowers wasm.lsda intrinsic to an MCSymbol pointing to the start of an
exception table
- Adds WasmException class with overridden methods for table generation
- Adds support for LSDA section in Wasm object writer

Reviewers: dschuff, sbc100, rnk

Subscribers: mgorny, jgravelle-google, sunfish, llvm-commits

Differential Revision: https://reviews.llvm.org/D52748

llvm-svn: 344575
2018-10-16 00:09:12 +00:00
Heejin Ahn
33c3fce592 [WebAssembly] Add WasmEHFuncInfo for unwind destination information
Summary:
Add WasmEHFuncInfo and routines to calculate and fill in this struct to
keep track of unwind destination information. This will be used in
other EH related passes.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, sunfish, chrib, llvm-commits

Differential Revision: https://reviews.llvm.org/D48263

llvm-svn: 335005
2018-06-19 00:26:39 +00:00
Gabor Buella
27c96d3d20 NFC Avoid a warning in WasmEHPrepare.cpp
```
../lib/CodeGen/WasmEHPrepare.cpp:166:30: warning: extra ‘;’ [-Wpedantic]
                 false, false);
                              ^
```

llvm-svn: 333732
2018-06-01 07:47:46 +00:00
Heejin Ahn
99d60e0dab [WebAssembly] Add Wasm exception handling prepare pass
Summary:
This adds a pass that transforms a program to be prepared for Wasm
exception handling. This is using Windows EH instructions and based on
the previous Wasm EH proposal.
(https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md)

Reviewers: dschuff, majnemer

Subscribers: jfb, mgorny, sbc100, jgravelle-google, JDevlieghere, sunfish, llvm-commits

Differential Revision: https://reviews.llvm.org/D43746

llvm-svn: 333696
2018-05-31 22:02:34 +00:00