Need to early exit out of the reordering process if the perfect/shuffled match is found in the operands. Such pattern will result in not profitable reordering because of (false positive) external use of scalars.
Differential Revision: https://reviews.llvm.org/D115811
No need to represent splats as a node with the reused scalars, it may
increase the cost (currently pass just ignores extra shuffle cost and it
is still not correct).
Differential Revision: https://reviews.llvm.org/D115800
Changes the preliminary multinode analysis:
1. Introduced scores for reversed loads/extractelements.
2. Improved shallow score calculation.
3. Lowered the cost of external uses (no need to consider it several times, just ones).
4. The initial lane for analysis is the one with the minimal possible
reorderings.
These changes in general shall reduce compile time and improve the
reordering in many cases.
Part of D57059.
Differential Revision: https://reviews.llvm.org/D101109
If the gather node is a mix of undefvalues and exractelement
instructions, need to take the ordering for such nodes into account too.
It allows to reorder some (sub)trees and remove some extra shuffles,
improving overall vectorization.
Also, outlined common functionality into a separate function.
Differential Revision: https://reviews.llvm.org/D115358
The comparator for the sort functions should provide strict weak
ordering relation between parameters. Current solution causes compiler
crash with some standard c++ library implementations, because it does
not meet this criteria. Tried to fix it + it improves the iverall
vectorization result.
Differential Revision: https://reviews.llvm.org/D115268
The recurrence lowering code has handling which claims to be about flag intersection, but all the callers pass empty arrays to the arguments. The sole exception is a caller of a method which has the argument, but no implementation.
I don't know what the intent was here, but it certaintly doesn't actually do anything today.
Need to add an extra check for potential undef values in
computeExtractCost function to avoid compiler crash on casting to
instructon.
Differential Revision: https://reviews.llvm.org/D115162
If the extractelement instruction is used multiple times in the
different tree entries (either vectorized, or gathered), need to
compensate the scalar cost of such instructions. They are completely
removed if all users are part of the tree but we need to compensate the
cost only once for each instruction.
Differential Revision: https://reviews.llvm.org/D114958
Need to outline the code for finding common vectors in insertelement
instructions into a separate function for future patches. It also
improves the process by adding some extra checks for early exit and
fixes a bug where it always finds the match because of erroneous compare
of the same values.
Differential Revision: https://reviews.llvm.org/D114909
If several shuffle instructions are emitted, some of them might
same/compatible (less defined) with the previously emitted ones. Such
shuffles can be removed safely, improving the total cost of the
vectorized code.
Differential Revision: https://reviews.llvm.org/D114087
Improved the calculation of the shuffled extracts, where possible. Need
to calculate the cost for the extracted scalars if some users are not
insertelements + improved the total estimation of the shuffled scalars
used in insertelements build vectors.
Differential Revision: https://reviews.llvm.org/D113782
Undefined vector might be not only the UndefValue, but also it can be
a constant vector with undef ot poison elements, need to check for this
kind of undef too.
Differential Revision: https://reviews.llvm.org/D114873
Extended support for undefined source vector/extract indices/non-fixed
vector types, also no need to check for the parent of the extractelement
instructions with the constant indicies.
Differential Revision: https://reviews.llvm.org/D114121
Compiler has an analysis for perfect diamond matching but it does not
support nodes with main/alternate opcodes. The problem is that the
scalars themselves are different and might not match directly with other
nodes, but operands and main/alternate opcodes might match and compiler
might reuse some previously emitted vector instructions. Need to include
this analysis in the cost model and actual vector instructions emission
process.
Differential Revision: https://reviews.llvm.org/D114101
Compiler has an analysis for perfect diamond matching but it does not
support nodes with main/alternate opcodes. The problem is that the
scalars themselves are different and might not match directly with other
nodes, but operands and main/alternate opcodes might match and compiler
might reuse some previously emitted vector instructions. Need to include
this analysis in the cost model and actual vector instructions emission
process.
Differential Revision: https://reviews.llvm.org/D114101
No need to count the final shuffle cost for the constants, gathering of
the constants is just a constant vector + extra inserts, if required.
Differential Revision: https://reviews.llvm.org/D113770
Need to adjust the types of GEPs indices when building the tree
entries/operands. Otherwise some of the nodes might differ and
vectorizer is unable to correctly find them and count their cost.
Differential Revision: https://reviews.llvm.org/D113792
A bunch of scalars can be treated as a splat not only if all elements
are the same but also if some of them are undefvalues.
Differential Revision: https://reviews.llvm.org/D113774
If the vector intrinsic has scalar argument, we currently still create
a tree entry for this argument. This entry is not used, just consumes
resources and increases the cost of the tree.
Differential Revision: https://reviews.llvm.org/D113806
Need to fix ther cost estimation for split loads, since we look at the
subregs already, no need to permute them, need just to estimate
subregister insert, if it is smaller than the real register. Also, using
split loads, it might be profitable already to vectorize smaller trees
with gathering of the loads.
Differential Revision: https://reviews.llvm.org/D107188
Gathered loads/extractelements/extractvalue instructions should be
checked if they can represent a vector reordering node too and their
order should ve taken into account for better graph reordering analysis/
Also, if the gather node has reused scalars, they must be reordered
instead of the scalars themselves.
Differential Revision: https://reviews.llvm.org/D112454
Gathered loads/extractelements/extractvalue instructions should be
checked if they can represent a vector reordering node too and their
order should ve taken into account for better graph reordering analysis/
Also, if the gather node has reused scalars, they must be reordered
instead of the scalars themselves.
Differential Revision: https://reviews.llvm.org/D112454
Gathered loads/extractelements/extractvalue instructions should be
checked if they can represent a vector reordering node too and their
order should ve taken into account for better graph reordering analysis/
Also, if the gather node has reused scalars, they must be reordered
instead of the scalars themselves.
Differential Revision: https://reviews.llvm.org/D112454
Need to emit select(cmp) instructions for poison-safe forms of select
ops. Currently alive reports that `Target is more poisonous than source`
for operations we generating for such instructions.
https://alive2.llvm.org/ce/z/FiNiAA
Differential Revision: https://reviews.llvm.org/D112562
The final reduction nodes should not be reordered, the order does not
matter for reductions. Also, it might be profitable to vectorize smaller
reduction trees, reduction cost may compensate small tree cost.
Part of D111574
Differential Revision: https://reviews.llvm.org/D112467
Need to change the order of the reduction/binops args pair vectorization
attempts. Need to try to find the reduction at first and postpone
vectorization of binops args. This may help to find more reduction
patterns and vectorize them.
Part of D111574.
Differential Revision: https://reviews.llvm.org/D112224
Vectorization of PHIs and stores very similar, it might be beneficial to
try to revectorize stores (like PHIs) if the total number of stores with
the same/alternate opcode is less than the vector size but number of
stores with the same type is larger than the vector size.
Differential Revision: https://reviews.llvm.org/D109831
Need to follow the order of the reused scalars from the
ReuseShuffleIndices mask rather than rely on the natural order.
Differential Revision: https://reviews.llvm.org/D111898
Need to check that either Idx is UndefMaskElem and value is UndefValue
or Idx is valid and value is the same as the scalar value in the node.
Differential Revision: https://reviews.llvm.org/D111802
We need to be better at exposing the comparison predicate to getCmpSelInstrCost calls as some targets (e.g. X86 SSE) have very different costs for different comparisons (PR48337), and we can't always rely on the optional Instruction argument.
This initial commit requires explicit condition type and predicate arguments. The next step will be to review a lot of the existing getCmpSelInstrCost calls which have used BAD_ICMP_PREDICATE even when the predicate is known.
Differential Revision: https://reviews.llvm.org/D111024
Some initially gathered nodes missed the check for the reused scalars,
which leads to high gather cost. Such nodes still can be represented as
m gathers + shuffle instead of n gathers, where m < n.
Differential Revision: https://reviews.llvm.org/D111153
D104809 changed `buildTree_rec` to check for extract element instructions
with scalable types. However, if the extract is extended or truncated,
these changes do not apply and we assert later on in isShuffle(), which
attempts to cast the type of the extract to FixedVectorType.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D110640
Try to improve vectorization of the PHI nodes by trying to vectorize
similar instructions at the size of the widest possible vectors, then
aggregating with compatible type PHIs and trying to vectoriza again and
only if this failed, try smaller sizes of the vector factors for
compatible PHI nodes. This restores performance of several benchmarks
after tuning of the fp/int conversion instructions costs.
Differential Revision: https://reviews.llvm.org/D108740
The instruction extractelement/extractvalue are not required to
be scheduled since they only depend on the source vector/aggregate (with
constant indices), smae applies to the parent basic block checks.
Improves compile time and saves scheduling budget.
Differential Revision: https://reviews.llvm.org/D108703
We see that it might otherwise do:
%10 = getelementptr {}**, <2 x {}***> %9, <2 x i32> <i32 10, i32 4>
%11 = bitcast <2 x {}***> %10 to <2 x i64*>
...
%27 = extractelement <2 x i64*> %11, i32 0
%28 = bitcast i64* %27 to <2 x i64>*
store <2 x i64> %22, <2 x i64>* %28, align 4, !tbaa !2
Which is an out-of-bounds store (the extractelement got offset 10
instead of offset 4 as intended). With the fix, we correctly generate
extractelement for i32 1 and generate correct code.
Differential Revision: https://reviews.llvm.org/D106613