Consider #109148:
```c++
template <typename ...Ts>
void f() {
[] {
(^Ts);
};
}
```
When we encounter `^Ts`, we try to parse a block and subsequently call
`DiagnoseUnexpandedParameterPack()` (in `ActOnBlockArguments()`), which
sees `Ts` and sets `ContainsUnexpandedParameterPack` to `true` in the
`LambdaScopeInfo` of the enclosing lambda. However, the entire block is
subsequently discarded entirely because it isn’t even syntactically
well-formed. As a result, `ContainsUnexpandedParameterPack` is `true`
despite the lambda’s body no longer containing any unexpanded packs,
which causes an assertion the next time
`DiagnoseUnexpandedParameterPack()` is called.
This pr moves handling of unexpanded parameter packs into
`CapturingScopeInfo` instead so that the same logic is used for both
blocks and lambdas. This fixes this issue since the
`ContainsUnexpandedParameterPack` flag is now part of the block (and
before that, its `CapturingScopeInfo`) and no longer affects the
surrounding lambda directly when the block is parsed. Moreover, this
change makes blocks actually usable with pack expansion.
This fixes#109148.
By allowing AnnotateAttr to be applied to statements, users can place arbitrary information in the AST for later use.
For example, this can be used for HW-targeted language extensions that involve specialized loop annotations.
- In Sema, when encountering Decls with function effects needing
verification, add them to a vector, DeclsWithEffectsToVerify.
- Update AST serialization to include DeclsWithEffectsToVerify.
- In AnalysisBasedWarnings, use DeclsWithEffectsToVerify as a work
queue, verifying functions with declared effects, and inferring (when
permitted and necessary) whether their callees have effects.
---------
Co-authored-by: Doug Wyatt <dwyatt@apple.com>
Co-authored-by: Sirraide <aeternalmail@gmail.com>
Co-authored-by: Erich Keane <ekeane@nvidia.com>
This reverts commit e39205654dc11c50bd117e8ccac243a641ebd71f.
There are further discussions in
https://github.com/llvm/llvm-project/pull/70976, happening for past two
weeks. Since there were no responses for couple weeks now, reverting
until author is back.
Resolves: #70930 (and probably latest comments from clangd/clangd#251)
by fixing racing for the shared DiagStorage value which caused messing with args inside the storage and then formatting the following message with getArgSInt(1) == 2:
def err_module_odr_violation_function : Error<
"%q0 has different definitions in different modules; "
"%select{definition in module '%2'|defined here}1 "
"first difference is "
which causes HandleSelectModifier to go beyond the ArgumentLen so the recursive call to FormatDiagnostic was made with DiagStr > DiagEnd that leads to infinite while (DiagStr != DiagEnd).
The Main Idea:
Reuse the existing DiagStorageAllocator logic to make all DiagnosticBuilders having independent states.
Also, encapsulating the rest of state (e.g. ID and Loc) into DiagnosticBuilder.
The last attempt failed -
https://github.com/llvm/llvm-project/pull/108187#issuecomment-2353122096
so was reverted - #108838
Resolves: #70930 (and probably latest comments from
https://github.com/clangd/clangd/issues/251)
by fixing racing for the shared `DiagStorage` value which caused messing
with args inside the storage and then formatting the following message
with `getArgSInt(1)` == 2:
```
def err_module_odr_violation_function : Error<
"%q0 has different definitions in different modules; "
"%select{definition in module '%2'|defined here}1 "
"first difference is "
```
which causes `HandleSelectModifier` to go beyond the `ArgumentLen` so
the recursive call to `FormatDiagnostic` was made with `DiagStr` >
`DiagEnd` that leads to infinite `while (DiagStr != DiagEnd)`.
**The Main Idea:**
Reuse the existing `DiagStorageAllocator` logic to make all
`DiagnosticBuilder`s having independent states.
Also, encapsulating the rest of state (e.g. ID and Loc) into
`DiagnosticBuilder`.
**TODO (if it will be requested by reviewer):**
- [x] add a test (I have no idea how to turn a whole bunch of my
proprietary code which leads `clangd` to OOM into a small public
example.. probably I must try using
[this](https://github.com/llvm/llvm-project/issues/70930#issuecomment-2209872975)
instead)
- [x] [`Diag.CurDiagID !=
diag::fatal_too_many_errors`](https://github.com/llvm/llvm-project/pull/108187#pullrequestreview-2296395489)
- [ ] ? get rid of `DiagStorageAllocator` at all and make
`DiagnosticBuilder` having they own `DiagnosticStorage` coz it seems
pretty small so should fit the stack for short-living
`DiagnosticBuilder` instances
This reverts commit e7f782e7481cea23ef452a75607d3d61f5bd0d22.
This had UBSan failures:
[----------] 1 test from ConfigCompileTests
[ RUN ] ConfigCompileTests.DiagnosticSuppression
Config fragment: compiling <unknown>:0 -> 0x00007B8366E2F7D8 (trusted=false)
/usr/local/google/home/fmayer/large/llvm-project/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h:203:33: runtime error: reference binding to null pointer of type 'clang::DiagnosticIDs'
UndefinedBehaviorSanitizer: undefined-behavior /usr/local/google/home/fmayer/large/llvm-project/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h:203:33
Pull Request: https://github.com/llvm/llvm-project/pull/108645
When various `Sema*.h` and `Sema*.cpp` files were created, cleanup of
`Sema.h` includes and forward declarations was left for the later.
Now's the time. This commit touches `Sema.h` and Sema components:
1. Unused includes are removed.
2. Unused forward declarations are removed.
3. Missing includes are added (those files are largely IWYU-clean now).
4. Includes were converted into forward declarations where possible.
As this commit focuses on headers, all changes to `.cpp` files were
minimal, and were aiming at keeping everything buildable.
Close https://github.com/llvm/llvm-project/issues/101398
The root cause of the issue is that I removed the codes before and
failed to recognize it in time and this was not found for a long time
due to it only crashes with invalid codes.
Fix the false warning
> incompatible pointer types passing 'va_list' (aka '__builtin_va_list')
to parameter of type 'struct __va_list_tag *'
[-Wincompatible-pointer-types]
The warning is wrong because both in the function declaration and at the
call site we are using `va_list`.
When we call `ASTContext::getBuiltinVaListDecl` at a specific moment, we
end up re-entering this function which causes creating 2 instances of
`BuiltinVaListDecl` and 2 instances of `VaListTagDecl` but the stored
instances are unrelated to each other because of the call sequence like
getBuiltinVaListDecl
CreateX86_64ABIBuiltinVaListDecl
VaListTagDecl = TagA
indirectly call getBuiltinVaListDecl
CreateX86_64ABIBuiltinVaListDecl
VaListTagDecl = TagB
BuiltinVaListDecl = ListB
BuiltinVaListDecl = ListA
Now we have `BuiltinVaListDecl == ListA` and `VaListTagDecl == TagB`.
For x86_64 '__builtin_va_list' and 'struct __va_list_tag *' are
compatible because '__builtin_va_list' == '__va_list_tag[1]'. But
because we have unrelated decls for VaListDecl and VaListTagDecl the
types are considered incompatible as we are comparing type pointers.
Fix the error by creating `BuiltinVaListDecl` before
`ASTReader::InitializeSema`, so that during
`ASTContext::getBuiltinVaListDecl` ASTReader doesn't try to de-serialize
'__builtin_va_list' and to call `ASTContext::getBuiltinVaListDecl`
again.
Reland with the requirement to have x86 target to avoid errors like
> error: unable to create target: 'No available targets are compatible
with triple "x86_64-apple-darwin"'
rdar://130947515
Fix the false warning
> incompatible pointer types passing 'va_list' (aka '__builtin_va_list')
to parameter of type 'struct __va_list_tag *'
[-Wincompatible-pointer-types]
The warning is wrong because both in the function declaration and at the
call site we are using `va_list`.
When we call `ASTContext::getBuiltinVaListDecl` at a specific moment, we
end up re-entering this function which causes creating 2 instances of
`BuiltinVaListDecl` and 2 instances of `VaListTagDecl` but the stored
instances are unrelated to each other because of the call sequence like
getBuiltinVaListDecl
CreateX86_64ABIBuiltinVaListDecl
VaListTagDecl = TagA
indirectly call getBuiltinVaListDecl
CreateX86_64ABIBuiltinVaListDecl
VaListTagDecl = TagB
BuiltinVaListDecl = ListB
BuiltinVaListDecl = ListA
Now we have `BuiltinVaListDecl == ListA` and `VaListTagDecl == TagB`.
For x86_64 '__builtin_va_list' and 'struct __va_list_tag *' are
compatible because '__builtin_va_list' == '__va_list_tag[1]'. But
because we have unrelated decls for VaListDecl and VaListTagDecl the
types are considered incompatible as we are comparing type pointers.
Fix the error by creating `BuiltinVaListDecl` before
`ASTReader::InitializeSema`, so that during
`ASTContext::getBuiltinVaListDecl` ASTReader doesn't try to de-serialize
'__builtin_va_list' and to call `ASTContext::getBuiltinVaListDecl`
again.
rdar://130947515
For the purpose of preprocessing and declarations in header files,
ensure clang accepts SVE types for both device and host targets.
Co-authored-by: Sander De Smalen <sander.desmalen@arm.com>
This patch moves documentation of `Sema` functions from `.cpp` files to `Sema.h` when there was no documentation in the latter, or it can be trivially subsumed. More complicated cases when there's less trivial divergence between documentation attached to declaration and the one attached to implementation are left for a later PR that would require review.
It appears that doxygen can find the documentation for a function defined out-of-line even if it's attached to an implementation, and not declaration. But other tools, e.g. clangd, are not as powerful. So this patch significantly improves autocompletion experience for (at least) clangd-based IDEs.
Introduce `nonblocking` and `nonallocating` attributes. RFC is here:
https://discourse.llvm.org/t/rfc-nolock-and-noalloc-attributes/76837
This PR introduces the attributes, with some changes in Sema to deal
with them as extensions to function (proto)types.
There are some basic type checks, most importantly, a warning when
trying to spoof the attribute (implicitly convert a function without the
attribute to one that has it).
A second, follow-on pull request will introduce new caller/callee
verification.
---------
Co-authored-by: Doug Wyatt <dwyatt@apple.com>
Co-authored-by: Shafik Yaghmour <shafik.yaghmour@intel.com>
Co-authored-by: Aaron Ballman <aaron@aaronballman.com>
Co-authored-by: Sirraide <aeternalmail@gmail.com>
This patch adds a new builtin type for AMDGPU's buffer rsrc data type,
which is effectively an AS 8 pointer. This is needed because we'd like
to expose certain intrinsics to users via builtins which take buffer
rsrc as argument.
The SVE diagnostics were guarded by a FD->hasBody() check that prevented
the diagnostic from being emitted for code that still triggered the
backend crashes that the errors were meant to avoid, because
FD->hasBody() returns false for a function that Clang is currently
processing. This is not done for the equivalent RISC-V code, and is not
needed for AArch64 either, so remove it.
Errors were also emitted in the wrong location, errors were emitted at
the called function's location, rather than at the caller's, which meant
that just removing the FD->hasBody() check resulted in incomprehensible
errors. Change this as well.
The aarch64-mangle-sve-vectors.cpp test was using -target-feature wrong
which was exposed as a result of these changes. Different target
features need to be passed in as different -target-feature options.
aarch64-targetattr-arch.c has a test_errors() function that needs to be
split in two. Now that svundef_s8() is diagnosed for its use of
svint8_t, the "needs target feature sve" diagnostic is no longer
emitted, but this affects all calls in the same function. To ensure we
still check this for its __crc32cd call, move that into a separate
function.
Fixes#94766.
This patch moves language- and target-specific functions out of
`SemaDeclAttr.cpp`. As a consequence, `SemaAVR`, `SemaM68k`,
`SemaMSP430`, `SemaOpenCL`, `SemaSwift` were created (but they are not
the only languages and targets affected).
Notable things are that `Sema.h` actually grew a bit, because of
templated helpers that rely on `Sema` that I had to make available from
outside of `SemaDeclAttr.cpp`. I also had to left CUDA-related in
`SemaDeclAttr.cpp`, because it looks like HIP is building up on top of
CUDA attributes.
This is a follow-up to #93179 and continuation of efforts to split
`Sema` up. Additional context can be found in #84184 and #92682.
This patch introduces `SemaAMDGPU`, `SemaARM`, `SemaBPF`, `SemaHexagon`,
`SemaLoongArch`, `SemaMIPS`, `SemaNVPTX`, `SemaPPC`, `SemaSystemZ`,
`SemaWasm`. This continues previous efforts to split Sema up. Additional
context can be found in #84184 and #92682.
I decided to bundle target-specific components together because of their
low impact on `Sema`. That said, their impact on `SemaChecking.cpp` is
far from low, and I consider it a success.
Somewhat accidentally, I also moved Wasm- and AMDGPU-specific function
from `SemaDeclAttr.cpp`, because they were exposed in `Sema`. That went
well, and I consider it a success, too. I'd like to move the rest of
static target-specific functions out of `SemaDeclAttr.cpp` like we're
doing with built-ins in `SemaChecking.cpp` .
Implements HLSL availability diagnostics' default and relaxed mode.
HLSL availability diagnostics emits errors or warning when unavailable
shader APIs are used. Unavailable shader APIs are APIs that are exposed
in HLSL code but are not available in the target shader stage or shader
model version.
In the default mode the compiler emits an error when an unavailable API
is found in a code that is reachable from the shader entry point
function. In the future this check will also extended to exported
library functions (#92073). The relaxed diagnostic mode is the same
except the compiler emits a warning. This mode is enabled by
``-Wno-error=hlsl-availability``.
See HLSL Availability Diagnostics design doc
[here](https://github.com/llvm/llvm-project/blob/main/clang/docs/HLSL/AvailabilityDiagnostics.rst)
for more details.
Fixes#90095
This patch moves `Sema` functions that are specific for x86 into the new
`SemaX86` class. This continues previous efforts to split `Sema` up.
Additional context can be found in #84184 and #92682.
This patch moves `Sema` functions that are specific for RISC-V into the
new `SemaRISCV` class. This continues previous efforts to split `Sema`
up. Additional context can be found in
https://github.com/llvm/llvm-project/pull/84184.
This PR is somewhat different from previous PRs on this topic:
1. Splitting out target-specific functions wasn't previously discussed.
It felt quite natural to do, though.
2. I had to make some static function in `SemaChecking.cpp` member
functions of `Sema` in order to use them in `SemaRISCV`.
3. I dropped "RISCV" from identifiers, but decided to leave "RVV"
(RISC-V "V" vector extensions) intact. I think it's an idiomatic
abbreviation at this point, but I'm open to input from contributors in
that area.
4. I repurposed `SemaRISCVVectorLookup.cpp` for `SemaRISCV`.
I think this was a successful experiment, which both helps the goal of
splitting `Sema` up, and shows a way to approach `SemaChecking.cpp`,
which I wasn't sure how to approach before. As we move more
target-specific function out of there, we'll gradually make the checking
"framework" inside `SemaChecking.cpp` public, which is currently a whole
bunch of static functions. This would enable us to move more functions
outside of `SemaChecking.cpp`.
This patch moves `Sema` functions that handle pseudo-objects into the
new `SemaPseudoObject` class. This continues previous efforts to split
`Sema` up. Additional context can be found in #84184.
As usual, in order to help reviewing this, formatting changes are split
into a separate commit.
This patch continues previous efforts to split `Sema` up, this time
covering code completion.
Context can be found in #84184.
Dropping `Code` prefix from function names in `SemaCodeCompletion` would
make sense, but I think this PR has enough changes already.
As usual, formatting changes are done as a separate commit. Hopefully
this helps with the review.
Scalable types are only available when:
* The function is compiled with +sve
* The function is compiled with +sme and the function is executed in
Streaming-SVE mode.
Our current method of storing the template arguments as written for
`(Class/Var)Template(Partial)SpecializationDecl` suffers from a number
of flaws:
- We use `TypeSourceInfo` to store `TemplateArgumentLocs` for class
template/variable template partial/explicit specializations. For
variable template specializations, this is a rather unintuitive hack (as
we store a non-type specialization as a type). Moreover, we don't ever
*need* the type as written -- in almost all cases, we only want the
template arguments (e.g. in tooling use-cases).
- The template arguments as written are stored in a number of redundant
data members. For example, `(Class/Var)TemplatePartialSpecialization`
have their own `ArgsAsWritten` member that stores an
`ASTTemplateArgumentListInfo` (the template arguments).
`VarTemplateSpecializationDecl` has yet _another_ redundant member
"`TemplateArgsInfo`" that also stores an `ASTTemplateArgumentListInfo`.
This patch eliminates all
`(Class/Var)Template(Partial)SpecializationDecl` members which store the
template arguments as written, and turns the `ExplicitInfo` member into
a `llvm::PointerUnion<const ASTTemplateArgumentListInfo*,
ExplicitInstantiationInfo*>` (to avoid unnecessary allocations when the
declaration isn't an explicit instantiation). The template arguments as
written are now accessed via `getTemplateArgsWritten` in all cases.
The "most breaking" change is to AST Matchers, insofar that `hasTypeLoc`
will no longer match class template specializations (since they no
longer store the type as written).
This patch moves SYCL-related `Sema` functions into new `SemaSYCL`
class, following the recent example of OpenACC and HLSL. This is a part
of the effort to split `Sema`. Additional context can be found in
#82217, #84184, #87634.
This patch introduces `SemaHLSL` class, and moves some HLSL-related
functions there. No functional changes intended.
Removing "HLSL" from function names inside `SemaHLSL` is left for a
subsequent PR by HLSL contributors, if they deem that desirable.
This is a part of the effort to split `Sema` into smaller manageable
parts, and follows the example of OpenACC. See #82217, #84184, #87634
for additional context.
This is a follow-up to #84184. Multiple reviewers there pointed out to
me that we should have a common base class for `Sema` and `SemaOpenACC`
to avoid code duplication for common helpers like `getLangOpts()`. On
top of that, `Diag()` function was requested for `SemaOpenACC`. This
patch delivers both.
The intent is to keep `SemaBase` as small as possible, as things there
are globally available across `Sema` and its parts without any
additional effort from usage side. Overused, this can undermine the
whole endeavor of splitting `Sema` apart.
Apart of shuffling code around, this patch introduces a helper private
function `SemaDiagnosticBuilder::getDeviceDeferredDiags()`, the sole
purpose of which is to encapsulate member access into (incomplete)
`Sema` for function templates defined in the header, where `Sema` can't
be complete.
This patch moves OpenACC parts of `Sema` into a separate class
`SemaOpenACC` that is placed in a separate header `Sema/SemaOpenACC.h`.
This patch is intended to be a model of factoring things out of `Sema`,
so I picked a small OpenACC part.
Goals are the following:
1) Split `Sema` into manageable parts.
2) Make dependencies between parts visible.
3) Improve Clang development cycle by avoiding recompiling unrelated
parts of the compiler.
4) Avoid compile-time regressions.
5) Avoid notational regressions in the code that uses Sema.
HLSL constant sized array function parameters do not decay to pointers.
Instead constant sized array types are preserved as unique types for
overload resolution, template instantiation and name mangling.
This implements the change by adding a new `ArrayParameterType` which
represents a non-decaying `ConstantArrayType`. The new type behaves the
same as `ConstantArrayType` except that it does not decay to a pointer.
Values of `ConstantArrayType` in HLSL decay during overload resolution
via a new `HLSLArrayRValue` cast to `ArrayParameterType`.
`ArrayParamterType` values are passed indirectly by-value to functions
in IR generation resulting in callee generated memcpy instructions.
The behavior of HLSL function calls is documented in the [draft language
specification](https://microsoft.github.io/hlsl-specs/specs/hlsl.pdf)
under the Expr.Post.Call heading.
Additionally the design of this implementation approach is documented in
[Clang's
documentation](https://clang.llvm.org/docs/HLSL/FunctionCalls.html)
Resolves#70123