1833 Commits

Author SHA1 Message Date
Jay Foad
a9bceb2b05 [APInt] Stop using soft-deprecated constructors and methods in llvm. NFC.
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.

Differential Revision: https://reviews.llvm.org/D110807
2021-10-04 08:57:44 +01:00
Philip Reames
5f7a535330 [SCEV] Cap the number of instructions scanned when infering flags
This addresses a comment from review on D109845.  The concern was raised that an unbounded scan would be expensive.  Long term plan is to cache this search - likely reusing the existing mechanism for loop side effects - but let's be simple and conservative for now.
2021-10-03 16:14:06 -07:00
Philip Reames
35ab211c37 [SCEV] Use trivial bound on defining scope of all SCEVs when computing flags
This addresses a comment from review on D109845.  Even for SCEVs which we can't find true bounds without recursing through operands, entry to the function forms a trivial upper bound.  In some cases, this trivial bound is enough to prove safety of flag inference.
2021-10-03 16:01:30 -07:00
Philip Reames
d02db32644 [SCEV] Use full logic when infering flags on add and gep
This is a followon to D109845. With that landed, we will have fixed all known instances of pr51817, and can thus start inferring flags more aggressively with greatly reduced risk of miscompiles. This patch simply applies the same inference logic used in that patch to our other major flag inference path.

We can still do much better here (on both paths), but this is our first step.

Differential Revision: https://reviews.llvm.org/D111003
2021-10-03 15:32:15 -07:00
Philip Reames
f39978b84f [SCEV] Correctly propagate nowrap flags across scopes when folding invariant add through addrec
This fixes a violation of the wrap flag rules introduced in c4048d8f. This is an alternate fix to D106852.

The basic problem being fixed is that we infer a set of flags which is valid at some inner scope S1 (usually by correctly propagating them from IR), and then (incorrectly) extend them to a SCEV in scope S2 where S1 != S2. This is not in general safe per the wrap flags semantics recently defined.

In this patch, I include a simple inference step to handle the case where we can prove that S2 is the preheader of the loop S1, and that entry into S2 implies execution of S1. See the code for a more detailed explanation.

One worry I have with this patch is that I might be over-fitting what shows up in tests - and thus hiding negative impact we'd see in the real world. My best defense is that the rule used here very closely follows the one used to propagate the flags from IR to the inner add to start with, and thus if one is reasonable, so probably is the other. Curious what others think about that piece.

The test diffs are roughly as expected. Mostly analysis only, with two transform changes. Oddly, the result looks better in the loop-idiom test, and I don't understand the PPC output enough to have tell. Nothing terrible looking though. (For context, without the scope inference peephole, the test delta includes a couple of vectorization tests. Again, not super concerning, but slightly more so.)

Differential Revision: https://reviews.llvm.org/D109845
2021-10-03 15:19:33 -07:00
Philip Reames
26223af256 [SCEV] Split isSCEVExprNeverPoison reasoning explicitly into scope and mustexecute parts [NFC]
Inspired by the needs to D111001 and D109845.  The seperation of concerns also amakes it easier to reason about correctness and completeness.
2021-10-02 13:10:38 -07:00
Philip Reames
2ca8a3f213 [SCEV] Stop blindly propagating flags from inbound geps to SCEV nodes
This fixes a violation of the wrap flag rules introduced in c4048d8f. This was also noted in the (very old) PR23527.

The issue being fixed is that we assume the inbound flag on any GEP assumes that all users of *any* gep (or add) which happens to map to that SCEV would also be UB if the (other) gep overflowed. That's simply not true.

In terms of the test diffs, I don't see anything seriously problematic. The lost flags are expected (given the semantic restriction on when its legal to tag the SCEV), and there are several cases where the previously inferred flags are unsound per the new semantics.

The only common trend I noticed when looking at the deltas is that by not considering branch on poison as immediate UB in ValueTracking, we do miss a few cases we could reclaim. We may be able to claw some of these back with the follow ideas mentioned in PR51817.

It's worth noting that most of the changes are analysis result only changes. The two transform changes are pretty minimal. In one case, we miss the opportunity to infer a nuw (correctly). In the other, we fail to fold an exit and produce a loop invariant form instead. This one is probably over-reduced as the program appears to be undefined in practice, and neither before or after exploits that.

Differential Revision: https://reviews.llvm.org/D109789
2021-10-01 16:30:44 -07:00
Philip Reames
24cde2f602 [SCEV] Remove invariant requirement from isSCEVExprNeverPoison
This code is attempting to prove that I must execute if we enter the defining scope of the SCEV which will be created from I. In the case where it found a defining addrec scope, it had a rather odd restriction that all of the other operands must be loop invariant in that addrec's loop.

As near as I can tell here, we really only need a upper bound on the defining scope. If we can prove the stronger property, then we must also have proven the property on the exact defining scope as well.

In practice, the actual effect of this change is narrow. The compile time restriction at the top of the routine basically limits us to I being an arithmetic in some loop L with both an addrec operand in L, and a unknown operands in L. Possible to demonstrate, but the main value of the change is removing unneeded code.

Differential Revision: https://reviews.llvm.org/D110892
2021-10-01 15:57:37 -07:00
Philip Reames
c5e491e6ee [SCEV] Modernize code style of isSCEVExprNeverPoison [NFC]
Use for-range and all_of to make code easier to read in advance of other changes.
2021-09-30 15:13:43 -07:00
Florian Hahn
1fbdbb5595
Revert "Recommit "[SCEV] Look through single value PHIs." (take 2)"
This reverts commit 764d9aa97905f202385b4f25f8d234630b4feef3.

This patch exposed a few additional cases where SCEV expressions are not
properly invalidated.

See PR52024, PR52023.
2021-09-30 20:53:51 +01:00
Florian Hahn
764d9aa979
Recommit "[SCEV] Look through single value PHIs." (take 2)
This reverts commit 8fdac7cb7abbeeaed016ef9eb7a087458e41e33f.

The issue causing the revert has been fixed a while ago in 60b852092c98.

Original message:

    Now that SCEVExpander can preserve LCSSA form,
    we do not have to worry about LCSSA form when
    trying to look through PHIs. SCEVExpander will take
    care of inserting LCSSA PHI nodes as required.

    This increases precision of the analysis in some cases.

    Reviewed By: mkazantsev, bmahjour

    Differential Revision: https://reviews.llvm.org/D71539
2021-09-28 10:32:17 +01:00
Max Kazantsev
cd166fb2ef [SCEV] Use isAvailableAtLoopEntry in the asserts
This is what is supposed to be there.
2021-09-21 17:11:15 +07:00
Max Kazantsev
4d5d725428 [SCEV] Add some asserts on availability of arguments of isLoopEntryGuardedByCond
The logic in howManyLessThans is fishy. It first checks invariance of
RHS, and then uses OrigRHS as argument for isLoopEntryGuardedByCond, which
is, strictly saying, a different thing. We are seeing a very rare intermittent
failure of availability checks, and it looks like this precondition is
sometimes broken. Before we can figure out what's going on, adding asserts
that all involved values that may possibly to to isLoopEntryGuardedByCond
are available at loop entry.

If either of these asserts fails (OrigRHS is the most likely suspect), it
means that the logic here is flawed.
2021-09-21 17:08:52 +07:00
Max Kazantsev
2c7d5fbc9e [SCEV] Generalize implication when signedness of FoundPred doesn't matter
The implication logic for two values that are both negative or non-negative
says that it doesn't matter whether their predicate is signed and unsigned,
but only flips unsigned into signed for further inference. This patch adds
support for flipping a signed predicate into unsigned as well.

Differential Revision: https://reviews.llvm.org/D109959
Reviewed By: nikic
2021-09-21 11:17:56 +07:00
Max Kazantsev
a06db78fd9 [NFC] Rename Context->CtxI in SCEV for uniformity reasons 2021-09-21 10:12:20 +07:00
Max Kazantsev
def15c5fb6 [SCEV] Support negative values in signed/unsigned predicate reasoning
There is a piece of logic that uses the fact that signed and unsigned
versions of the same predicate are equivalent when both values are
non-negative. It's also true when both of them are negative.

Differential Revision: https://reviews.llvm.org/D109957
Reviewed By: nikic
2021-09-20 11:26:33 +07:00
Philip Reames
9bdb19cca2 [SCEV] (udiv X, Y) * Y is always NUW
Motivated by the removal done in D109782. This implements the correct flag part generically.

Differential Revision: https://reviews.llvm.org/D109786
2021-09-15 11:34:50 -07:00
Philip Reames
0dd755f027 [SCEV] Stop applying contextual flags in applyLoopGuards
This fixes a violation of the wrap flag rules introduced in c4048d8f. As noted in the original review, the NUW is legal to infer from the structure of the replacee, but a) there's no test coverage, and b) this should be done generically for all multiplies.

Differential Revision: https://reviews.llvm.org/D109782
2021-09-14 14:14:52 -07:00
Philip Reames
bfa2a81e92 [ScalarEvolution] Add an additional bailout to avoid NOT of pointer.
It's possible in some cases for the LHS to be a pointer where the RHS is not. This isn't directly possible for an icmp, but the analysis mixes up operands of different icmp expressions in some cases.

This does not include a test case as the smallest reduced case we've managed is extremely fragile and unlikely to test anything meaningful in the long term.

Also add an assertion to getNotSCEV() to make tracking down this sort of issue a bit easier in the future.

Fixes https://bugs.llvm.org/show_bug.cgi?id=51787 .

Differential Revision: https://reviews.llvm.org/D109546
2021-09-09 15:19:36 -07:00
Philip Reames
eede4846a9 [SCEV] Allow negative steps for LT exit count computation for unsigned comparisons
This bit of code is incredibly suspicious. It allows fully unknown (but potentially negative) steps, but not steps known to be negative. The comment about scev flag inference is worrying, but also not correct to my knowledge.

At best, this might be covering up some related miscompile. However, there's no test in tree for it, the review history doesn't include obvious motivation, and the C++ example doesn't appear to give wrong results when hand translated to IR. I think it's time to remove this and see what falls out.

During review, there were concerns raised about the correctness of the corresponding signed case.  This change was deliberately narrowed to the unsigned case which has been auditted and appears correct for negative values.  We need to get back to the known-negative signed case, but that'll be a future patch if nothing falls out from this one.

Differential Revision: https://reviews.llvm.org/D104140
2021-09-09 14:09:29 -07:00
Eli Friedman
8f792707c4 [ScalarEvolution] Fix pointer/int confusion in howManyLessThans.
In general, howManyLessThans doesn't really want to work with pointers
at all; the result is an integer, and the operands of the icmp are
effectively integers.  However, isLoopEntryGuardedByCond doesn't like
extra ptrtoint casts, so the arguments to isLoopEntryGuardedByCond need
to be computed without those casts.

Somehow, the values got mixed up with the recent howManyLessThans
improvements; fix the confused values, and add a better comment to
explain what's happening.

Differential Revision: https://reviews.llvm.org/D109465
2021-09-09 12:38:33 -07:00
Philip Reames
e741fabc22 [SCEV] Move getIndexExpressionsFromGEP to delinearize [NFC] 2021-09-08 16:56:49 -07:00
Philip Reames
4b5e260b1d [SCEV] Simplify findExistingSCEVInCache interface [NFC]
We were returning a tuple when all but one caller only cared about one piece of the return value.  That one caller can inline the complexity, and we can simplify all other uses.
2021-09-08 15:26:07 -07:00
Philip Reames
585c594d74 Move delinearization logic out of SCEV [NFC]
None of this logic has anything to do with SCEV's internals, it just uses the existing public APIs.  As a result, we can move the code from ScalarEvolution.cpp/hpp to Delinearization.cpp/hpp with only minor changes.

This was discussed in advance on today's loop opt call.  It turned out to be easy as hoped.
2021-09-08 12:28:35 -07:00
Philip Reames
6cdca906c7 [SCEV] Use no-self-wrap flags infered from exit structure to compute trip count
The basic problem being solved is that we largely give up when encountering a trip count involving an IV which is not an addrec. We will fall back to the brute force constant eval, but that doesn't have the information about the fact that we can't cycle back through the same set of values.

There's a high level design question of whether this is the right place to handle this, and if not, where that place is. The major alternative here would be to return a conservative upper bound, and then rely on two invocations of indvars to add the facts to the narrow IV, and then reconstruct SCEV. (I have not implemented the alternative and am not 100% sure this would work out.) That's arguably more in line with existing code, but I find this substantially easier to reason about.  During review, no one expressed a strong opinion, so we went with this one.

Differential Revision: D108651
2021-09-07 17:00:02 -07:00
Philip Reames
9659069978 [SCEV] Further clarify comments regarding UB and zero stride
Follow on to D109029. I realized we had no mention of mustprogrress in the comment (as it prexisted mustprogress in the codebase). In the process of adding it, I tweaked the preconditions into something I think is more clear. Note that mustprogress is checked in the code.

Differential Revision: https://reviews.llvm.org/D109091
2021-09-07 13:53:56 -07:00
Kazu Hirata
5648f7170e [Analysis, Target, Transforms] Construct SmallVector with iterator ranges (NFC) 2021-09-07 09:19:33 -07:00
Nikita Popov
8d54c8a0c3 [SCEV] Fix applyLoopGuards() with range check idiom (PR51760)
Due to a typo, this replaced %x with umax(C1, umin(C2, %x + C3))
rather than umax(C1, umin(C2, %x)). This didn't make a difference
for the existing tests, because the result is only used for range
calculation, and %x will usually have an unknown starting range,
and the additional offset keeps it unknown. However, if %x already
has a known range, we may compute a result range that is too
small.
2021-09-06 22:22:41 +02:00
Philip Reames
bb0fa3ea02 Revert "snapshot - do not push"
This reverts commit 91f4655d9273ecefab1b7f0ea26d44f5de6fd0af.

This wasn't intented to be pushed, sorry.
2021-09-01 16:59:23 -07:00
Philip Reames
91f4655d92 snapshot - do not push 2021-09-01 16:59:01 -07:00
Philip Reames
73b951a7f7 [SCEV] Clarify requirements for zero-stride to be UB
There's a silent bug in our reasoning about zero strides. We assume that having a single static exit implies that if that exit is not taken, then the loop must be infinite. This ignores the potential for abnormal exits via exceptions. Consider the following example:

for (uint_8 i = 0; i < 1; i += 0) {
  throw_on_thousandth_call();
}

Our reasoning is such that we'd conclude this loop can't take the backedge as that would lead to a (presumed) infinite loop.

In practice, this is a silent bug because the loopIsFiniteByAssumption returns false strictly more often than the loopHaNoAbnormalExits property. We could reasonable want to change that in the future, so fixing the codeflow now is worthwhile.

Differential Revision: https://reviews.llvm.org/D109029
2021-09-01 14:01:13 -07:00
Philip Reames
29fa37ec9f [SCEV] If max BTC is zero, then so is the exact BTC [2 of 2]
This extends D108921 into a generic rule applied to constructing ExitLimits along all paths. The remaining paths (primarily howFarToZero) don't have the same reasoning about UB sensitivity as the howManyLessThan ones did. Instead, the remain cause for max counts being more precise than exact counts is that we apply context sensitive loop guards on the max path, and not on the exact path. That choice is mildly suspect, but out of scope of this patch.

The MVETailPredication.cpp change deserves a bit of explanation. We were previously figuring out that two SCEVs happened to be equal because the happened to be identical. When we optimized one with context sensitive information, but not the other, we lost the ability to prove them equal. So, cover this case by subtracting and then applying loop guards again. Without this, we see changes in test/CodeGen/Thumb2/mve-blockplacement.ll

Differential Revision: https://reviews.llvm.org/D109015
2021-09-01 11:51:48 -07:00
Philip Reames
6600e1759b [SCEV] If max BTC is zero, then so is the exact BTC [1 of N]
This patch is specifically the howManyLessThan case.  There will be a couple of followon patches for other codepaths.

The subtle bit is explaining why the two codepaths have a difference while both are correct. The test case with modifications is a good example, so let's discuss in terms of it.
* The previous exact bounds for this example of (-126 + (126 smax %n))<nsw> can evaluate to either 0 or 1. Both are "correct" results, but only one of them results in a well defined loop. If %n were 127 (the only possible value producing a trip count of 1), then the loop must execute undefined behavior. As a result, we can ignore the TC computed when %n is 127. All other values produce 0.
* The max taken count computation uses the limit (i.e. the maximum value END can be without resulting in UB) to restrict the bound computation. As a result, it returns 0 which is also correct.

WARNING: The logic above only holds for a single exit loop. The current logic for max trip count would be incorrect for multiple exit loops, except that we never call computeMaxBECountForLT except when we can prove either a) no overflow occurs in this IV before exit, or b) this is the sole exit.

An alternate approach here would be to add the limit logic to the symbolic path. I haven't played with this extensively, but I'm hesitant because a) the term is optional and b) I'm not sure it'll reliably simplify away. As such, the resulting code quality from expansion might actually get worse.

This was noticed while trying to figure out why D108848 wasn't NFC, but is otherwise standalone.

Differential Revision: https://reviews.llvm.org/D108921
2021-08-31 08:50:11 -07:00
Nikita Popov
9f7873784d [SCEVExpander] Reuse removePointerBase() for canonical addrecs
ExposePointerBase() in SCEVExpander implements basically the same
functionality as removePointerBase() in SCEV, so reuse it.

The SCEVExpander code assumes that the pointer operand on adds is
the last one -- I'm not sure that always holds. As such this might
not be strictly NFC.
2021-08-29 21:12:35 +02:00
Nikita Popov
e6a5dd60ff [SCEV] Assert unique pointer base (NFC)
Add expressions can contain at most one pointer operand nowadays,
assert that in getPointerBase() and removePointerBase().
2021-08-29 20:06:24 +02:00
Philip Reames
ec8d87e9f5 [SCEV] Infer nuw from nw for addrecs
This was previously committed in 914836b, and reverted due to confusion on the status of the review.

Differential Revision: https://reviews.llvm.org/D108601
2021-08-24 14:24:05 -07:00
Philip Reames
58582bae63 Revert "[SCEV] Infer nsw/nuw from nw for addrecs"
This reverts commit 914836b1c8b36d4a317ef6c233746f6ec37b57a5.  Further comments on review came up after initial approval.  Reverting while addressing.
2021-08-24 09:28:37 -07:00
Philip Reames
914836b1c8 [SCEV] Infer nsw/nuw from nw for addrecs
If we no an addrec doesn't self-wrap, the increment is strictly positive, and the start value is the smallest representable value, then we know that the corresponding wrap type can not occur.

Differential Revision: https://reviews.llvm.org/D108601
2021-08-24 08:53:21 -07:00
Philip Reames
96ef794fd0 [SCEV] Add a hasFlags utility to improve readability [NFC] 2021-08-23 17:36:52 -07:00
Roman Lebedev
0dc6b597db
Revert "[SCEV] Remove premature assert. PR46786"
Since then, the SCEV pointer handling as been improved,
so the assertion should now hold.

This reverts commit b96114c1e1fc4448ea966bce013706359aee3fa9,
relanding the assertion from commit 141e845da5dda6743a09f858b4aec0133a931453.
2021-08-13 17:50:22 +03:00
Philip Reames
f82f39b9cf [SCEV] Add a comment about invariant in howManyLessThans 2021-07-26 16:39:26 -07:00
Nikita Popov
33146857e9 [IR] Consider non-willreturn as side effect (PR50511)
This adjusts mayHaveSideEffect() to return true for !willReturn()
instructions. Just like other side-effects, non-willreturn calls
(aka "divergence") cannot be removed and cannot be reordered relative
to other side effects. This fixes a number of bugs where
non-willreturn calls are either incorrectly dropped or moved. In
particular, it also fixes the last open problem in
https://bugs.llvm.org/show_bug.cgi?id=50511.

I performed a cursory review of all current mayHaveSideEffect()
uses, which convinced me that these are indeed the desired default
semantics. Places that do not want to consider non-willreturn as a
sideeffect generally do not want mayHaveSideEffect() semantics at
all. I identified two such cases, which are addressed by D106591
and D106742. Finally, there is a use in SCEV for which we don't
really have an appropriate API right now -- what it wants is
basically "would this be considered forward progress". I've just
spelled out the previous semantics there.

Differential Revision: https://reviews.llvm.org/D106749
2021-07-26 16:35:14 +02:00
Philip Reames
ec43def700 Style tweaks for SCEV's computeMaxBECountForLT [NFC] 2021-07-23 17:19:45 -07:00
Philip Reames
4a3dc7dc9a [SCEV] Fix bug involving zero step and non-invariant RHS in trip count logic
Eli pointed out the issue when reviewing D104140. The max trip count logic makes an assumption that the value of IV changes. When the step is zero, the nowrap fact becomes trivial, and thus there's nothing preventing the loop from being nearly infinite. (The "nearly" part is because mustprogress may disallow an infinite loop while still allowing 999999999 iterations before RHS happens to allow an exit.)

This is very difficult to see in practice. You need a means to produce a loop varying RHS in a mustprogress loop which doesn't allow the loop to be infinite. In most cases, LICM or SCEV are smart enough to remove the loop varying expressions.

Differential Revision: https://reviews.llvm.org/D106327
2021-07-23 15:19:23 -07:00
Eli Friedman
de3ea51be4 [ScalarEvolution] Refine computeMaxBECountForLT to be accurate in more cases.
Allow arbitrary strides, and make sure we return the correct result when
the backedge-taken count is zero.

Differential Revision: https://reviews.llvm.org/D106197
2021-07-19 15:43:30 -07:00
Philip Reames
4402d0d4fb [SCEV] Add a clarifying comment in howManyLessThans
Wrap semantics are subtle when combined with multiple exits.  This has caused several rounds of confusion during recent reviews, so try to document the subtly distinction between when wrap flags provide <u and <=u facts.
2021-07-19 15:13:48 -07:00
Nikita Popov
2b17c24a03 [SCEV] Fix unused variable warning (NFC) 2021-07-18 23:12:22 +02:00
Eli Friedman
28a3ad3f86 [ScalarEvolution] Remove uses of PointerType::getElementType. 2021-07-18 13:14:33 -07:00
Eli Friedman
cbba71bfb5 [ScalarEvolution] Fix overflow in computeBECount.
The current implementation of computeBECount doesn't account for the
possibility that adding "Stride - 1" to Delta might overflow. For almost
all loops, it doesn't, but it's not actually proven anywhere.

To deal with this, use a variety of tricks to try to prove that the
addition doesn't overflow.  If the proof is impossible, use an alternate
sequence which never overflows.

Differential Revision: https://reviews.llvm.org/D105216
2021-07-16 16:15:18 -07:00
Philip Reames
a99d420a93 [SCEV] Fix unsound reasoning in howManyLessThans
This is split from D105216, it handles only a subset of the cases in that patch.

Specifically, the issue being fixed is that the code incorrectly assumed that (Start-Stide) < End implied that the backedge was taken at least once. This is not true when e.g. Start = 4, Stride = 2, and End = 3. Note that we often do produce the right backedge taken count despite the flawed reasoning.

The fix chosen here is to use an alternate form of uceil (ceiling of unsigned divide) lowering which is safe when max(RHS,Start) > Start - Stride.  (Note that signedness of both max expression and comparison depend on the signedness of the comparison being analyzed, and that overflow in the Start - Stride expression is allowed.)  Note that this is weaker than proving the backedge is taken because it allows start - stride < end < start.  Some cases which can't be proven safe are sent down the generic path, and we do end up generating less optimal expressions in a few cases.

Credit for coming up with the approach goes entirely to Eli.  I just split it off, tweaked the comments a bit, and did some additional testing.

Differential Revision: https://reviews.llvm.org/D105942
2021-07-15 10:32:47 -07:00