In some cases, breaking large PHIs can very negatively affect
performance (3x more instructions observed in a particular test case).
This patch adds some basic profitability heuristics to help with some of these issues without affecting the "good" cases.
e.g. avoid breaking PHIs if it causes back-and-forth between vector/scalar form for no good reason.
Fixes SWDEV-392803
Fixes SWDEV-393781
Fixes SWDEV-394228
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D147786
DAGISel uses CopyToReg/CopyFromReg to lower PHI nodes. With large PHIs, this can result in poor codegen.
This is because it introduces a need to have a build_vector before copying the PHI value, and that build_vector may have many undef elements. This can cause very high register pressure and abnormal stack usage in some cases.
This scalarization/phi "break-up" can be easily tuned/disabled through CL options in case it's not beneficial for some users.
It's also only enabled for DAGIsel and GlobalISel handles PHIs much better (as it works on the whole function).
This can both scalarize (break a vector into its elements) and simplify (break a vector into smaller, more manageable subvectors) PHIs.
Fixes SWDEV-321581
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D143731
A little extra change was needed in UA because it didn't consider
InvokeInst and it made call-constexpr.ll assert.
Reviewed By: sameerds, arsenm
Differential Revision: https://reviews.llvm.org/D145358
This is only used by CodeGen. Moving it out of AMDGPUBaseInfo simplifies
future changes to make some of it depend on the subtarget.
Differential Revision: https://reviews.llvm.org/D144650
C++17 allows us to call constructors pair and tuple instead of helper
functions make_pair and make_tuple.
Differential Revision: https://reviews.llvm.org/D139828
This function returns an upper bound on the number of bits needed
to represent the signed value. Use "Max" to match similar functions
in KnownBits like countMaxActiveBits.
Rename APInt::getMinSignedBits->getSignificantBits. Keeping the old
name around to keep this patch size down. Will do a bulk rename as
follow up.
Rename KnownBits::countMaxSignedBits->countMaxSignificantBits.
Reviewed By: lebedev.ri, RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D116522
Change numBitsSigned to return the minimum size of a signed integer that
can hold the value. This is different by one from the previous result
but is more consistent with numBitsUnsigned. Update all callers. All
callers are now more consistent between the signed and unsigned cases,
and some callers get simpler, especially the ones that deal with
quantities like numBitsSigned(LHS) + numBitsSigned(RHS).
Differential Revision: https://reviews.llvm.org/D112813
We were bailing out of creating 24-bit muls for results wider than 32
bits in AMDGPUCodeGenPrepare. With the 24-bit mulhi intrinsic, this
change teaches AMDGPUCodeGenPrepare to generate the 48-bit mul
correctly.
Differential Revision: https://reviews.llvm.org/D112395
The isU24() and isI24() calls numBits to make its decision. This change
replaces them with the internal numBits call so that we can use its
result for the > 32 bit width cases.
Differential Revision: https://reviews.llvm.org/D111864
This changes fixes a case in which the highest set bit of the original
result is at bit 31 and sign-extending the mul24 for it would make the
result negative.
Differential Revision: https://reviews.llvm.org/D111823
The 24-bit mul intrinsics yields the low-order 32 bits. We should only
do the transformation if the operands are known to be not wider than 24
bits and the result is known to be not wider than 32 bits.
Differential Revision: https://reviews.llvm.org/D111523
Implemented the transformation of xor (llvm.amdgcn.class x, mask), -1 into
llvm.amdgcn.class(x, ~mask). Added LIT tests as well.
Differential Revision: https://reviews.llvm.org/D104049
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
This interferes with GlobalISel's much better handling of the
situation.
This should really be disable for GlobalISel. However, the fallback
only re-runs the selection passes, and doesn't go back and rerun any
codegen IR passes. I haven't come up with a good solution to this
problem.
Fix the division/remainder algorithm by adding a second quotient
refinement step, which is required in some cases like
0xFFFFFFFFu / 0x11111111u (https://bugs.llvm.org/show_bug.cgi?id=46212).
Also document, rewrite and simplify it by ensuring that we always have a
lower bound on inv(y), which simplifies the UNR step and the quotient
refinement steps.
Differential Revision: https://reviews.llvm.org/D83381
This is preparation for D79294, which removes an expensive
InstSimplify optimization, on the assumption that it will be
picked up by InstCombine instead. Of course, this does not hold
up if a backend performs non-trivial IR expansions without running
a canonicalization pipeline afterwards, which turned up as an
issue in the context of AMDGPU div/rem expansion.
This patch mitigates the issue by explicitly performing a known
bits calculation where it matters. No test changes, as those would
only be visible after the other patch lands.
Differential Revision: https://reviews.llvm.org/D79596
These will be widened in the DAG. In the meanwhile early
widening prevents otherwise possible vectorization of
such loads.
Differential Revision: https://reviews.llvm.org/D77835
The division expansions in AMDGPUCodeGenPrepare can't be relied on for
correctness, since they punt to later optimization and possibly
legalization in some cases. We still need a way to be able to write
tests for the legalizer versions of the expansion. This is mostly for
GlobalISel, since the expected optimzations is expecting aren't
implemented.
The interaction with the flag to expand 64-bit division in the IR is
pretty confusing, but these flags have different purposes.
I didn't realize we were already expanding 24/32-bit division here
already. Use the available IntegerDivision utilities. This uses loops,
so produces significantly smaller code than the inline DAG expansion.
This now requires width reductions of 64-bit divisions before
introducing the expanded loops.
This helps work around missing legalization in GlobalISel for
division, which are the only remaining core instructions that didn't
work at all.
I think this is plausibly a better implementation than exists in the
DAG, although turning it on by default misses out on the constant
value optimizations and also needs benchmarking.
This was creating a select on true/false values, and then comparing
that later. This produced more work for later combines, which can be
avoided by just using the boolean values. This was copied from the
original DAG expansion, which also has the same problem. This doesn't
have a observable change using SelectionDAG, but since GlobalISel is
missing these optimizations, the final code was noticeably longer.
These have nicer expansions implemented in the DAG. Ideally we would
either directly implement all of these special expansions, or stop
expanding division in the IR.
Since natural fdiv lowering is now more conservative even with
denormals disabled, we get a slower expansion from just a plain
1.0/fdiv. Directly emit the rcp intrinsic when using it to implement
integer division to avoid a pointlessly complex sequence.
Summary:
The accuracy limit to use rcp is adjusted to 1.0 ulp from 2.5 ulp.
Also, afn instead of arcp is used to allow inaccurate rcp to be used.
Reviewers:
arsenm
Differential Revision: https://reviews.llvm.org/D73588
Summary:
RCP has the accuracy limit. If FDIV fpmath require high accuracy rcp may not
meet the requirement. However, in DAG lowering, fpmath information gets lost,
and thus we may generate either inaccurate rcp related computation or slow code
for fdiv.
In patch implements fdiv optimizations in the AMDGPUCodeGenPrepare, which could
exactly know !fpmath.
FastUnsafeRcpLegal: We determine whether it is legal to use rcp based on
unsafe-fp-math, fast math flags, denormals and fpmath
accuracy request.
RCP Optimizations:
1/x -> rcp(x) when fast unsafe rcp is legal or fpmath >= 2.5ULP with
denormals flushed.
a/b -> a*rcp(b) when fast unsafe rcp is legal.
Use fdiv.fast:
a/b -> fdiv.fast(a, b) when RCP optimization is not performed and
fpmath >= 2.5ULP with denormals flushed.
1/x -> fdiv.fast(1,x) when RCP optimization is not performed and
fpmath >= 2.5ULP with denormals.
Reviewers:
arsenm
Differential Revision:
https://reviews.llvm.org/D71293
DAGCombiner does this, but divisions expanded here miss this
optimization. Since 67aa18f165640374cf0e0a6226dc793bbda6e74f,
divisions have been expanded here and missed out on this
optimization. Avoids test regressions in a future patch.