Removed definitions of vectorizeBasicBlock and VectorizeConfig
(possibly a remnant from the BBVectorize pass that was removed
way back in 2017).
Also reduced amount of include dependencies to Transforms/Vectorize.h.
NVPTXAliasAnalysis extends the default AA to take pointer address
spaces into account. The analysis assumes that pointers in different
address spaces do not alias, unless one of them is generic (flat)
address space.
The patch also implements pointsToConstantMemory (via
getModRefInfoMask) to expose semantic of the constant address space to
the optimizer as discussed in D112466.
Differential Revision: https://reviews.llvm.org/D124787
Fixes https://github.com/llvm/llvm-project/issues/46954
The assumption that generic pointers passed to a CUDA kernel is CUDA-specific
and should not be applied to non-CUDA compilations. Addrspacecasts to global AS
and back should never be applied to AS-specific pointers.
In order to make tests actually do the testing for non-CUDA compilation, we need
to get TargetMachine from the TargetPassConfig, instead of passing it explicitly
as a pass constructor argument.
Differential Revision: https://reviews.llvm.org/D142581
The comment introduced in b94bd05b952a5 was misplaced during
f14af1621942 and no longer comments on the relevant bit of code; move it
back so it makes sense.
In use ManagedStringPool caused a lot of heap allocations. At least one
for every register name lookup in NVPTXTargetRegisterInfo and one for
every symbol lookup in the target machine and isel lowering. There
already exists an llvm/Support string interning-class that has better
memory performance. Use LLVM's and delete ManagedStringPool which was
unique to PTX
llc Binary Size (.text only; bss and data were unchanged):
MinsizeRel:
Before: 31219884
After: 31219796
Release:
Before: 42961872
After: 42960656
Total heap allocations by the NVPTX string saving code running
check-llvm-codegen-nvptx
Total bytes allocated:
Before: 2431825
After: 2288151
(All numbers on x86-64-linux-gnu / gcc-12 / lld14)
I didn't see obvious time differences when running the tests.
Reviewers: tra, avasonic
Differential Revision: https://reviews.llvm.org/D140704
Follow up to the series:
1. https://reviews.llvm.org/D140161
2. https://reviews.llvm.org/D140349
3. https://reviews.llvm.org/D140331
4. https://reviews.llvm.org/D140323
Completes the work from the previous two for remaining targets.
This creates the following named passes that can be run via
`llc -{start|stop}-{before|after}`:
- arc-isel
- arm-isel
- avr-isel
- bpf-isel
- csky-isel
- hexagon-isel
- lanai-isel
- loongarch-isel
- m68k-isel
- msp430-isel
- mips-isel
- nvptx-isel
- ppc-codegen
- riscv-isel
- sparc-isel
- systemz-isel
- ve-isel
- wasm-isel
- xcore-isel
A nice way to write tests for SelectionDAGISel might be to use a RUN:
line like:
llc -mtriple=<triple> -start-before=<arch>-isel -stop-after=finalize-isel -o -
Fixes: https://github.com/llvm/llvm-project/issues/59538
Reviewed By: asb, zixuan-wu
Differential Revision: https://reviews.llvm.org/D140364
This fixes what I consider to be an API flaw I've tripped over
multiple times. The point this is constructed isn't well defined, so
depending on where this is first called, you can conclude different
information based on the MachineFunction. For example, the AMDGPU
implementation inspected the MachineFrameInfo on construction for the
stack objects and if the frame has calls. This kind of worked in
SelectionDAG which visited all allocas up front, but broke in
GlobalISel which hasn't visited any of the IR when arguments are
lowered.
I've run into similar problems before with the MIR parser and trying
to make use of other MachineFunction fields, so I think it's best to
just categorically disallow dependency on the MachineFunction state in
the constructor and to always construct this at the same time as the
MachineFunction itself.
A missing feature I still could use is a way to access an custom
analysis pass on the IR here.
This reverts commit 122efef8ee9be57055d204d52c38700fe933c033.
- Patch fixed to not reuse definitions from predecessors in EH landing pads.
- Late review suggestions (by MaskRay) have been addressed.
- M68k/pipeline.ll test updated.
- Init captures added in processBlock() to avoid capturing structured bindings.
- RISCV has this disabled for now.
Original commit message:
A new pass MachineLateInstrsCleanup is added to be run after PEI.
This is a simple pass that removes redundant and identical instructions
whenever found by scanning the MF once while keeping track of register
definitions in a map. These instructions are typically immediate loads
resulting from rematerialization, and address loads emitted by target in
eliminateFrameInde().
This is enabled by default, but a target could easily disable it by means of
'disablePass(&MachineLateInstrsCleanupID);'.
This late cleanup is naturally not "optimal" in removing instructions as it
is done by looking at phys-regs, but still quite effective. It would be
desirable to improve other parts of CodeGen and avoid these redundant
instructions in the first place, but there are no ideas for this yet.
Differential Revision: https://reviews.llvm.org/D123394
Reviewed By: RKSimon, foad, craig.topper, arsenm, asb
Init captures added in processBlock() to avoid capturing structured bindings,
which caused the build problems (with clang).
RISCV has this disabled for now until problems relating to post RA pseudo
expansions are resolved.
A new pass MachineLateInstrsCleanup is added to be run after PEI.
This is a simple pass that removes redundant and identical instructions
whenever found by scanning the MF once while keeping track of register
definitions in a map. These instructions are typically immediate loads
resulting from rematerialization, and address loads emitted by target in
eliminateFrameInde().
This is enabled by default, but a target could easily disable it by means of
'disablePass(&MachineLateInstrsCleanupID);'.
This late cleanup is naturally not "optimal" in removing instructions as it
is done by looking at phys-regs, but still quite effective. It would be
desirable to improve other parts of CodeGen and avoid these redundant
instructions in the first place, but there are no ideas for this yet.
Differential Revision: https://reviews.llvm.org/D123394
Reviewed By: RKSimon, foad, craig.topper, arsenm, asb
Since opt no longer supports to run default (O0/O1/O2/O3/Os/Oz)
pipelines using the legacy PM, there are no in-tree uses of
TargetMachine::adjustPassManager remaining. This patch removes the
no longer used adjustPassManager functions.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D137796
- CUDA cannot associate memory space with pointer types. Even though Clang could add extra attributes to specify the address space explicitly on a pointer type, it breaks the portability between Clang and NVCC.
- This change proposes to assume the address space from a pointer from the assumption built upon target-specific address space predicates, such as `__isGlobal` from CUDA. E.g.,
```
foo(float *p) {
__builtin_assume(__isGlobal(p));
// From there, we could assume p is a global pointer instead of a
// generic one.
}
```
This makes the code portable without introducing the implementation-specific features.
Note that NVCC starts to support __builtin_assume from version 11.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D112041
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
Pulled out the OptimizationLevel class from PassBuilder in order to be able to access it from within the PassManager and avoid include conflicts.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D107025
Printing pass manager invocations is fairly verbose and not super
useful.
This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.
This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D101797
LLVM does not have valid assembly backends for atomicrmw on local memory. However, as this memory is thread local, we should be able to lower this to the relevant load/store.
Differential Revision: https://reviews.llvm.org/D98650
LLVM does not have valid assembly backends for atomicrmw on local memory. However, as this memory is thread local, we should be able to lower this to the relevant load/store.
Differential Revision: https://reviews.llvm.org/D98650
These passes are causing numerical discrepancies after being added to
the pipeline. Disable while investigating.
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D96166
There are only two used in the IR optimization pipeline.
Port these and add them to the default pipeline.
Similar to https://reviews.llvm.org/D93863.
I added -mtriple to some tests since under the new PM, the passes are
only available when the TargetMachine is specified.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D93930
Make the sequence of passes to select and rewrite instructions to
physical registers be a target callback. This is to prepare to allow
targets to split register allocation into multiple phases.
This allow it to recognize more loads as being consecutive when the load's address are complex at the start.
Differential Revision: https://reviews.llvm.org/D74444
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
This reverts r362990 (git commit 374571301dc8e9bc9fdd1d70f86015de198673bd)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360729
This will allow targets more flexibility to replace the
register allocator core passes. In a future commit,
AMDGPU will run the core register assignment passes
twice, and will also want to disallow using the
standard -regalloc option.
llvm-svn: 356506
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The patch adds a possibility to make library calls on NVPTX.
An important thing about library functions - they must be defined within
the current module. This basically should guarantee that we produce a
valid PTX assembly (without calls to not defined functions). The one who
wants to use the libcalls is probably will have to link against
compiler-rt or any other implementation.
Currently, it's completely impossible to make library calls because of
error LLVM ERROR: Cannot select: i32 = ExternalSymbol '...'. But we can
lower ExternalSymbol to TargetExternalSymbol and verify if the function
definition is available.
Also, there was an issue with a DAG during legalisation. When we expand
instruction into libcall, the inner call-chain isn't being "integrated"
into outer chain. Since the last "data-flow" (call retval load) node is
located in call-chain earlier than CALLSEQ_END node, the latter becomes
a leaf and therefore a dead node (and is being removed quite fast).
Proposed here solution relies on another data-flow pseudo nodes
(ProxyReg) which purpose is only to keep CALLSEQ_END at legalisation and
instruction selection phases - we remove the pseudo instructions before
register scheduling phase.
Patch by Denys Zariaiev!
Differential Revision: https://reviews.llvm.org/D34708
llvm-svn: 350069
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
Const/local/shared address spaces are all < 4GB and we can always use
32-bit pointers to access them. This has substantial performance impact
on kernels that uses shared memory for intermediary results.
The feature is disabled by default.
Differential Revision: https://reviews.llvm.org/D46147
llvm-svn: 331941
Summary:
This change declare that PostRAMachineSinking and ShrinkWrap require NoVRegs
property, so now the MachineFunctionPass can enforce this check.
These passes are disabled in NVPTX & WebAssembly.
Reviewers: dschuff, jlebar, tra, jgravelle-google, MatzeB, sebpop, thegameg, mcrosier
Reviewed By: dschuff, thegameg
Subscribers: jholewinski, jfb, sbc100, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45183
llvm-svn: 329095
Summary:
Make NVPTX require structured CFG. Added a temporary flag to
"roll back" the behavior for easy deployment.
Combined with D45008, this fixes several internal Nvidia GPU test
failures that we suspect to be ptxas miscompiles (PR27738).
Reviewers: jlebar
Subscribers: jholewinski, sanjoy, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D45070
llvm-svn: 328885
This avoids playing games with pseudo pass IDs and avoids using an
unreliable MRI::isSSA() check to determine whether register allocation
has happened.
Note that this renames:
- MachineLICMID -> EarlyMachineLICM
- PostRAMachineLICMID -> MachineLICMID
to be consistent with the EarlyTailDuplicate/TailDuplicate naming.
llvm-svn: 322927
Re-land r321234. It had to be reverted because it broke the shared
library build. The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).
Original commit message:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321375