Ironically, MSan copies uninitialized data off the stack into
VAArgTLSCopy in the callee-side handling of va_start. Clamp the copy
size to the actual length of the buffer, and zero-initialize the
remainder.
Differential Revision: https://reviews.llvm.org/D146858
This adds support for scalable vector types - at least far enough to get basic load and store cases working. It turns out that load/store without origin tracking already worked; I apparently got that working with one of the pre patches to use TypeSize utilities and didn't notice. The code changes here are required to enable origin tracking.
For origin tracking, a 4 byte value - the origin - is broadcast into a shadow region whose size exactly matches the type being accessed. This origin is only written if the shadow value is non-zero. The details of how shadow is computed from the original value being stored aren't relevant for this patch.
The code changes involve two related primitives.
First, we need to be able to perform that broadcast into a scalable sized memory region. This requires the use of a loop, and appropriate bound. The fixed size case optimizes with larger stores and alignment; I did not bother with that for the scalable case for now. We can optimize this codepath later if desired.
Second, we need a way to test if the shadow is zero. The mechanism for this in the code is to convert the shadow value into a scalar, and then zero check that. There's an assumption that this scalar is zero exactly when all elements of the shadow value are zero. As a result, we use an OR reduction on the scalable vector. This is analogous to how e.g. an array is handled. I landed a bunch of cleanup changes to remove other direct uses of the scalar conversion to convince myself there were no other undocumented invariants.
Differential Revision: https://reviews.llvm.org/D146157
This is an implementation detail of the flattening scheme, so hide it in the implementation thereof. This does require one caller to go through the appropriate utility, but doing that makes the code cleaner anyways.
This is part of prework for supporting scalable vector types. This isn't NFC because it shifts the point of failure (i.e. which assert triggers first), but should be NFC for all non-scalable vector inputs.
VarArgSystemZHelper.visitCallBase() checks whether the callee has the
"use-soft-float" attribute, but if the callee is a function pointer, a
null pointer dereference happens.
Fix by checking this attribute on the current function. Alternatively,
one could try the callee first, but this is pointless, since one should
not be mixing hardfloat and softfloat code anyway.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D143296
For the targets that have in their ABI the requirement that arguments and
return values are extended to the full register bitwidth, it is important
that calls when built also take care of this detail.
The OMPIRBuilder, AddressSanitizer, GCOVProfiling, MemorySanitizer and
ThreadSanitizer passes are with this patch hopefully now doing this properly.
Reviewed By: Eli Friedman, Ulrich Weigand, Johannes Doerfert
Differential Revision: https://reviews.llvm.org/D133949
Use deduction guides instead of helper functions.
The only non-automatic changes have been:
1. ArrayRef(some_uint8_pointer, 0) needs to be changed into ArrayRef(some_uint8_pointer, (size_t)0) to avoid an ambiguous call with ArrayRef((uint8_t*), (uint8_t*))
2. CVSymbol sym(makeArrayRef(symStorage)); needed to be rewritten as CVSymbol sym{ArrayRef(symStorage)}; otherwise the compiler is confused and thinks we have a (bad) function prototype. There was a few similar situation across the codebase.
3. ADL doesn't seem to work the same for deduction-guides and functions, so at some point the llvm namespace must be explicitly stated.
4. The "reference mode" of makeArrayRef(ArrayRef<T> &) that acts as no-op is not supported (a constructor cannot achieve that).
Per reviewers' comment, some useless makeArrayRef have been removed in the process.
This is a follow-up to https://reviews.llvm.org/D140896 that introduced
the deduction guides.
Differential Revision: https://reviews.llvm.org/D140955
r249754 (2015) added this macro (not set anywhere) for an escape hatch.
This old layout has been non-working for many years (Linux
arch/x86/include/asm/elf.h ELF_ET_DYN_BASE is outside the APP range):
FATAL: Code 0x558547327980 is out of application range. Non-PIE build?
FATAL: MemorySanitizer can not mmap the shadow memory.
FATAL: Make sure to compile with -fPIE and to link with -pie.
FATAL: Disabling ASLR is known to cause this error.
FATAL: If running under GDB, try 'set disable-randomization off'.
Non-pie doesn't work either.
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
msan's app memory mappings for aarch64 are constrained by
the MEM_TO_SHADOW constant to 64GB or less, and some app
memory mappings (in kMemoryLayout) are even smaller in
practice. This will lead to a crash with the error message
"MemorySanitizer can not mmap the shadow memory" if the
executable's memory mappings (e.g., libraries) extend
beyond msan's app memory mappings.
This patch makes the app/shadow/origin memory mappings
considerably larger, along with corresponding changes to
the MEM_TO_SHADOW and SHADOW_TO_ORIGIN constants.
Note that this deprecates compatibility with 39- and 42-bit
VMAs.
Differential Revision: https://reviews.llvm.org/D137666
This switches everything to use the memory attribute proposed in
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
The old argmemonly, inaccessiblememonly and inaccessiblemem_or_argmemonly
attributes are dropped. The readnone, readonly and writeonly attributes
are restricted to parameters only.
The old attributes are auto-upgraded both in bitcode and IR.
The bitcode upgrade is a policy requirement that has to be retained
indefinitely. The IR upgrade is mainly there so it's not necessary
to update all tests using memory attributes in this patch, which
is already large enough. We could drop that part after migrating
tests, or retain it longer term, to make it easier to import IR
from older LLVM versions.
High-level Function/CallBase APIs like doesNotAccessMemory() or
setDoesNotAccessMemory() are mapped transparently to the memory
attribute. Code that directly manipulates attributes (e.g. via
AttributeList) on the other hand needs to switch to working with
the memory attribute instead.
Differential Revision: https://reviews.llvm.org/D135780
This addresses a bug where vector versions of ctlz are creating false positive reports.
Depends on D136369
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D136523
Instrumentation just ORs shadow of inputs.
I assume some result shadow bits can be reset if we go into specifics of particular checks,
but as-is it is still an improvement against existing default strict instruction handler, when
every set bit of input shadow is reported as an error.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D134123
Msan has default handler for unknown instructions which
previously applied to these as well. However depending on
mask, not all pointers or passthru part will be used. This
allows other passes to insert undef into sum arguments.
As result, default strict instruction handler can produce false reports.
Reviewed By: kda, kstoimenov
Differential Revision: https://reviews.llvm.org/D133678
According to logs, ClInstrumentationWithCallThreshold is workaround
for slow backend with large number of basic blocks.
However, I can't reproduce that one, but I see significant slowdown
after ClCheckConstantShadow. Without ClInstrumentationWithCallThreshold
compiler is able to eliminate many of the branches.
So maybe we should drop ClInstrumentationWithCallThreshold completly.
For now I just change the logic to ignore constant shadow so it will
not trigger callback fallback too early.
Reviewed By: kstoimenov
Differential Revision: https://reviews.llvm.org/D133880
If multiple warnings created on the same instruction (debug location)
it can be difficult to figure out which input value is the cause.
This patches chains origins just before the warning using last origins
update debug information.
To avoid inflating the binary unnecessarily, do this only when uncertainty is
high enough, 3 warnings by default. On average it adds 0.4% to the
.text size.
Reviewed By: kda, fmayer
Differential Revision: https://reviews.llvm.org/D133232
GlobalsAA is considered stateless as usually transformations do not introduce
new global accesses, and removed global access is not a problem for GlobalsAA
users.
Sanitizers introduce new global accesses:
- Msan and Dfsan tracks origins and parameters with TLS, and to store stack origins.
- Sancov uses global counters. HWAsan store tag state in TLS.
- Asan modifies globals, but I am not sure if invalidation is required.
I see no evidence that TSan needs invalidation.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D133394
When we want to add instrumentation after
an instruction, instrumentation still should
keep debug info of the instruction.
Reviewed By: kda, kstoimenov
Differential Revision: https://reviews.llvm.org/D133091
Reduces .text size by 1% on our large binary.
On CTMark (-O2 -fsanitize=memory -fsanitize-memory-use-after-dtor -fsanitize-memory-param-retval)
Size -0.4%
Time -0.8%
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D133071
It's a preparation of to combine shadow checks of the same instruction
Reviewed By: kda, kstoimenov
Differential Revision: https://reviews.llvm.org/D133065
When instrumenting `alloca`s, we use a `SmallSet` (i.e. `SmallPtrSet`). When there are fewer elements than the `SmallSet` size, it behaves like a vector, offering stable iteration order. Once we have too many `alloca`s to instrument, the iteration order becomes unstable. This manifests as non-deterministic builds because of the global constant we create while instrumenting the alloca.
The test added is a simple IR file, but was discovered while building `libcxx/src/filesystem/operations.cpp` from libc++. A reduced C++ example from that:
```
// clang++ -fsanitize=memory -fsanitize-memory-track-origins \
// -fno-discard-value-names -S -emit-llvm \
// -c op.cpp -o op.ll
struct Foo {
~Foo();
};
bool func1(Foo);
void func2(Foo);
void func3(int) {
int f_st, t_st;
Foo f, t;
func1(f) || func1(f) || func1(t) || func1(f) && func1(t);
func2(f);
}
```
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D133034
If constant shadown enabled we had false reports because
!isZeroValue() does not guaranty that the values is actually not zero.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D132761
The array size specification of the an alloca can be any integer,
so zext or trunc it to intptr before attempting to multiply it
with an intptr constant.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D131846