BDCE is not used by the codegen pipeline so we should not need the
legacy PM version of the pass any longer.
Differential Revision: https://reviews.llvm.org/D148335
Remove C APIs for interacting with PassRegistry and pass
initialization. These are legacy PM concepts, and are no longer
relevant for the new pass manager.
Calls to these initialization functions can simply be dropped.
Differential Revision: https://reviews.llvm.org/D145043
No need to include CallGraphSCCPass.h from the IPO/Inliner.
Also removed the include of LegacyPassManager.h in a couple of files
that do not really depend on that header file.
Differential Revision: https://reviews.llvm.org/D148083
DFAJumpThreading
JumpThreading
LibCallsShrink
LoopVectorize
SLPVectorizer
DeadStoreElimination
AggressiveDCE
CorrelatedValuePropagation
IndVarSimplify
These are part of the optimization pipeline, of which the legacy version is deprecated and being removed.
Legacy passes are only supported for codegen, and I don't believe
it's possible to write backends using the C API, so we should drop
all of those. Reduces the number of places that need to be modified
when removing legacy passes.
Differential Revision: https://reviews.llvm.org/D144970
This reverts commit a9a1950115d7db95c7439128b14af2cefe8f796d.
The legacy PM uses in Polly have been removed, so recommit the patch.
Original message:
This is part of the optimization pipeline, of which the legacy pass manager version is deprecated.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D144201
This reverts commit 5356fefc19df3fbf32d180b1b10e6226e8743541.
It looks like Polly still relies on the legacy SCCP pass. Bring it back
until the best way forward is determined.
This is part of the optimization pipeline, of which the legacy pass manager version is deprecated.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D144201
This patch ports the PlaceSafepoints pass to the new pass manager as it is used by .NET/Mono. Compatibility with the legacy pass manager is maintained by adding PlaceSafepointsLegacyPass. This pass also depends on PlaceBackedgeSafepointsLegacyPass, which has been kept in the legacy-only variant, since it is apparently used only from PlaceSafepointsPass. It has been renamed, though, to indicate its legacy interface.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D136163
These are part of the optimization pipeline, of which the legacy pass manager version is deprecated.
Namely
* Internalize
* StripSymbols
* StripNonDebugSymbols
* StripDeadDebugInfo
* StripDeadPrototypes
* VectorCombine
* WarnMissedTransformations
Fixed previously failing ocaml tests (one of them seems to already be failing?)
These are part of the optimization pipeline, of which the legacy pass manager version is deprecated.
Namely
* Internalize
* StripSymbols
* StripNonDebugSymbols
* StripDeadDebugInfo
* StripDeadPrototypes
* VectorCombine
* WarnMissedTransformations
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline. This is a new pass (2020-11) to generate remarks from
!annotation metadata (e.g. -ftrivial-auto-var-init=).
This patch was added way back in the beginning of the work which became the statepoint infrastructure. The idea was that safepoints could be inserted late in the optimization pipeline. This is true if the only concern is garbage collection, but this approach turned out to be incompatible with the requirement to also support deoptimization at safepoints.
In theory, this pass would still be quite useful for an AOT compiled language which wants to support garbage collection, but we have no known users, and haven't for over 5 years. Time to remove unused code. If someone wants to use this, restoring it would not be hard. The immediate motivation for removal is that this is one of the last passes remaining which hasn't been ported to the new pass manager and the (straight forward) work to do so is not justified for unused code.
Differential Revision: https://reviews.llvm.org/D135371
The legacy LoopUnswitch pass is only used in the legacy pass manager
pipeline, which is deprecated.
The NewPM replacement is SimpleLoopUnswitch and I think it is time to
remove the legacy LoopUnswitch code.
Fixes#31000.
Reviewed By: aeubanks, Meinersbur, asbirlea
Differential Revision: https://reviews.llvm.org/D124376
The current JumpThreading pass does not jump thread loops since it can
result in irreducible control flow that harms other optimizations. This
prevents switch statements inside a loop from being optimized to use
unconditional branches.
This code pattern occurs in the core_state_transition function of
Coremark. The state machine can be implemented manually with goto
statements resulting in a large runtime improvement, and this transform
makes the switch implementation match the goto version in performance.
This patch specifically targets switch statements inside a loop that
have the opportunity to be threaded. Once it identifies an opportunity,
it creates new paths that branch directly to the correct code block.
For example, the left CFG could be transformed to the right CFG:
```
sw.bb sw.bb
/ | \ / | \
case1 case2 case3 case1 case2 case3
\ | / / | \
latch.bb latch.2 latch.3 latch.1
br sw.bb / | \
sw.bb.2 sw.bb.3 sw.bb.1
br case2 br case3 br case1
```
Co-author: Justin Kreiner @jkreiner
Co-author: Ehsan Amiri @amehsan
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99205
This patch adds new PM support for the pass and the pass can be now used
during middle-end transforms. The old pass is remamed to
ScalarizeMaskedMemIntrinLegacyPass.
Reviewed-By: skatkov, aeubanks
Differential Revision: https://reviews.llvm.org/D92743
ScalarizeMaskedMemIntrinsic is currently a codeGen level pass. The pass
is actually operating on IR level and does not use any code gen specific
passes. It is useful to move it into transforms directory so that it
can be more widely used as a mid-level transform as well (apart from
usage in codegen pipeline).
In particular, we have a usecase downstream where we would like to use
this pass in our mid-level pipeline which operates on IR level.
The next change will be to add support for new PM.
Reviewers: craig.topper, apilipenko, skatkov
Reviewed-By: skatkov
Differential Revision: https://reviews.llvm.org/D92407
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.
It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.
The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.
To motivate this, consider these specific questions we would like to get answered:
* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?
Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
Reviewed By: thegameg, jdoerfert
Differential Revision: https://reviews.llvm.org/D91188
`-separate-const-offset-from-gep` has not yet be ported, so some tests are not updated.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D90149
This doesn't support -structurizecfg-skip-uniform-regions since that
would require porting LegacyDivergenceAnalysis.
The NPM doesn't support adding a non-analysis pass as a dependency of
another, so I had to add -lowerswitch to some tests or pin them to the
legacy PM.
This is the only RegionPass in tree, so I simply copied the logic for
finding all Regions from the legacy PM's RGManager into
StructurizeCFG::run().
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D89026
This is a simple pass that flattens nested loops. The intention is to optimise
loop nests like this, which together access an array linearly:
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
f(A[i*M+j]);
into one loop:
for (int i = 0; i < (N*M); ++i)
f(A[i]);
It can also flatten loops where the induction variables are not used in the
loop. This can help with codesize and runtime, especially on simple cpus
without advanced branch prediction.
This is only worth flattening if the induction variables are only used in an
expression like i*M+j. If they had any other uses, we would have to insert a
div/mod to reconstruct the original values, so this wouldn't be profitable.
This partially fixes PR40581 as this pass triggers on one of the two cases. I
will follow up on this to learn LoopFlatten a few more (small) tricks. Please
note that LoopFlatten is not yet enabled by default.
Patch by Oliver Stannard, with minor tweaks from Dave Green and myself.
Differential Revision: https://reviews.llvm.org/D42365