This reverts commit 81fc3add1e627c23b7270fe2739cdacc09063e54.
This breaks some LLDB tests, e.g.
SymbolFile/DWARF/x86/no_unique_address-with-bitfields.cpp:
lldb: ../llvm-project/clang/lib/AST/Decl.cpp:4604: unsigned int clang::FieldDecl::getBitWidthValue() const: Assertion `isa<ConstantExpr>(getBitWidth())' failed.
Save the bitwidth value as a `ConstantExpr` with the value set. Remove
the `ASTContext` parameter from `getBitWidthValue()`, so the latter
simply returns the value from the `ConstantExpr` instead of
constant-evaluating the bitwidth expression every time it is called.
Note that PointerUnion::{is,get} have been soft deprecated in
PointerUnion.h:
// FIXME: Replace the uses of is(), get() and dyn_cast() with
// isa<T>, cast<T> and the llvm::dyn_cast<T>
I'm not touching PointerUnion::dyn_cast for now because it's a bit
complicated; we could blindly migrate it to dyn_cast_if_present, but
we should probably use dyn_cast when the operand is known to be
non-null.
We observed 2X slowdown in lldb's expression evaluation with
https://github.com/llvm/llvm-project/pull/109147 in some cases. It turns
out that calling `isRedundantInlineQualifierFor` is quite expensive.
Using short-circuit evaluation in the if statement to avoid unnecessary
calls to that function.
The __builtin_counted_by_ref builtin is used on a flexible array
pointer and returns a pointer to the "counted_by" attribute's COUNT
argument, which is a field in the same non-anonymous struct as the
flexible array member. This is useful for automatically setting the
count field without needing the programmer's intervention. Otherwise
it's possible to get this anti-pattern:
ptr = alloc(<ty>, ..., COUNT);
ptr->FAM[9] = 42; /* <<< Sanitizer will complain */
ptr->count = COUNT;
To prevent this anti-pattern, the user can create an allocator that
automatically performs the assignment:
#define alloc(TY, FAM, COUNT) ({ \
TY __p = alloc(get_size(TY, COUNT)); \
if (__builtin_counted_by_ref(__p->FAM)) \
*__builtin_counted_by_ref(__p->FAM) = COUNT; \
__p; \
})
The builtin's behavior is heavily dependent upon the "counted_by"
attribute existing. It's main utility is during allocation to avoid
the above anti-pattern. If the flexible array member doesn't have that
attribute, the builtin becomes a no-op. Therefore, if the flexible
array member has a "count" field not referenced by "counted_by", it
must be set explicitly after the allocation as this builtin will
return a "nullptr" and the assignment will most likely be elided.
---------
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Co-authored-by: Aaron Ballman <aaron@aaronballman.com>
This patch reapplies #114258, fixing an infinite recursion bug in
`ASTImporter` that occurs when importing the primary template of a class
template specialization when the latest redeclaration of that template
is a friend declaration in the primary template.
This patch fixes a couple of regressions introduced in #111852.
Consider:
```
template<typename T>
struct A
{
template<bool U>
static constexpr bool f() requires U
{
return true;
}
};
template<>
template<bool U>
constexpr bool A<short>::f() requires U
{
return A<long>::f<U>();
}
template<>
template<bool U>
constexpr bool A<long>::f() requires U
{
return true;
}
static_assert(A<short>::f<true>()); // crash here
```
This crashes because when collecting template arguments from the _first_
declaration of `A<long>::f<true>` for constraint checking, we don't add
the template arguments from the enclosing class template specialization
because there exists another redeclaration that is a member
specialization.
This also fixes the following example, which happens for a similar
reason:
```
// input.cppm
export module input;
export template<int N>
constexpr int f();
template<int N>
struct A {
template<int J>
friend constexpr int f();
};
template struct A<0>;
template<int N>
constexpr int f() {
return N;
}
```
```
// input.cpp
import input;
static_assert(f<1>() == 1); // error: static assertion failed
```
This patch reapplies #111173, fixing a bug when instantiating dependent
expressions that name a member template that is later explicitly
specialized for a class specialization that is implicitly instantiated.
The bug is addressed by adding the `hasMemberSpecialization` function,
which return `true` if _any_ redeclaration is a member specialization.
This is then used when determining the instantiation pattern for a
specialization of a template, and when collecting template arguments for
a specialization of a template.
Add a new enumeration `SuppressInlineNamespaceMode` to `PrintingPolicy` that
is explicit about how to handle inline namespaces. `SuppressInlineNamespace`
uses that enumeration now instead of a Boolean value.
Specializing a template from an inline namespace should be transparent.
For instance
```
namespace foo {
inline namespace v1 {
template<typename A>
void function(A&);
}
}
namespace foo {
template<>
void function<int>(int&);
}
```
`hasName` should match both declarations of `foo::function`.
Makes the behavior of `matchesNodeFullSlow` and `matchesNodeFullFast`
consistent, fixing an assert inside `HasNameMatcher::matchesNode`.
This fixes instantiation of definition for friend function templates,
when the declaration found and the one containing the definition
have different template contexts.
In these cases, the the function declaration corresponding to the
definition is not available; it may not even be instantiated at all.
So this patch adds a bit which tracks which function template
declaration was instantiated from the member template.
It's used to find which primary template serves as a context
for the purpose of obtaining the template arguments needed
to instantiate the definition.
Fixes#55509
Reapplies #106585, fixing an issue where non-dependent names of member
templates appearing prior to that member template being explicitly
specialized for an implicitly instantiated class template specialization
would incorrectly use the definition of the explicitly specialized
member template.
HLSL doesn't distinguish `main` from any other function. It does treat
entry points special, but they're not required to be called `main` so we
have a different attribute annotation to mark them.
At the moment this change really just changes the mangling of functions
named `main` in the Itanium mangling.
Fixes#110517
---------
Co-authored-by: Farzon Lotfi <1802579+farzonl@users.noreply.github.com>
This extends default argument deduction to cover class templates as
well, applying only to partial ordering, adding to the provisional
wording introduced in https://github.com/llvm/llvm-project/pull/89807.
This solves some ambuguity introduced in P0522 regarding how template
template parameters are partially ordered, and should reduce the
negative impact of enabling `-frelaxed-template-template-args` by
default.
Given the following example:
```C++
template <class T1, class T2 = float> struct A;
template <class T3> struct B;
template <template <class T4> class TT1, class T5> struct B<TT1<T5>>; // #1
template <class T6, class T7> struct B<A<T6, T7>>; // #2
template struct B<A<int>>;
```
Prior to P0522, `#2` was picked. Afterwards, this became ambiguous. This
patch restores the pre-P0522 behavior, `#2` is picked again.
For mobile applications, it's common for global destructors to never be
called (because the applications have their own lifecycle independent of
the standard C runtime), but threads are created and destroyed as normal
and so thread-local destructors are still called. -fno-static-c++-destructors
omits unnecessary global destructors, which is useful for code size, but
it also omits thread-local destructors, which is unsuitable. Add a
ternary `-fc++-static-destructors={all,none,thread-local}` option
instead to allow omitting only global destructors.
Close https://github.com/llvm/llvm-project/issues/99825
The root cause of the issue is that I didn't realize the things in
implicit global module (the language linkage in module interfaces)
should be considered in module purview.
This reverts commit 18f3bcbb13ca83d33223b00761d8cddf463e9ffb, 15bb02650e26875c48889053d6a9697444583721 and
99873b35da7ecb905143c8a6b8deca4d4416f1a9.
See the post commit message in
https://github.com/llvm/llvm-project/pull/75912 to see the reasons.
module
Possibly fix https://github.com/llvm/llvm-project/issues/96693
The direct reason is that we are calculating the linkage for the
declaration too early so that the linkage got calculated incorrectly.
And after I look into the problem, I found it is completely not
necessary to calculate the linkage there. It is for ModulesTS. So I
simply removes that legacy experimental code and fix the issue.
VarDecl::isNull() doesn't tell whether the VarDecl has an initializer as
methods like ensureEvaluatedStmt can create an EvaluatedStmt even when
there isn't an initializer.
Revert e1c3e16d24b5cc097ff08e9283f53319acd3f245 as the change isn't
needed anymore with this change.
See the discussion in https://github.com/llvm/llvm-project/pull/93749.
`Eval->Value.get` returns a null pointer when the variable doesn't have
an initializer. Use `cast_if_present` instead of `cast`.
This fixes https://github.com/llvm/llvm-project/issues/93625.
rdar://128482541
This patch tries to remove all the direct use of DeclID except the real
low level reading and writing. All the use of DeclID is converted to
the use of LocalDeclID or GlobalDeclID. This is helpful to increase the
readability and type safety.
This patch tries to remove all the direct use of DeclID except the real
low level reading and writing. All the use of DeclID is converted to
the use of LocalDeclID or GlobalDeclID. This is helpful to increase the
readability and type safety.
Previously, the DeclID is defined in serialization/ASTBitCodes.h under
clang::serialization namespace. However, actually the DeclID is not
purely used in serialization part. The DeclID is already widely used in
AST and all around the clang project via classes like `LazyPtrDecl` or
calling `ExternalASTSource::getExernalDecl()`. All such uses are via the
raw underlying type of `DeclID` as `uint32_t`. This is not pretty good.
This patch moves the DeclID class family to a new header `AST/DeclID.h`
so that the whole project can use the wrapped class `DeclID`,
`GlobalDeclID` and `LocalDeclID` instead of the raw underlying type.
This can improve the readability and the type safety.
Previously we use 'unsigned' as the type of ID in 'CreateDeserialized'.
And the type of `DeclID` in serialization is 'uint32_t', so there is
minor inconsistency.
Also more importantly, if we want to extend the type of DeclID from
uint32_t to uint64_t, we may be in trouble due to we forgot updating the
a lot of 'CreateDeserialized'.
So this patch tries to use semantical type 'DeclID' for
'*Decl::CreateDeserialized' to make sure it is tightly consistent.
Reduced BMI
Mitigate https://github.com/llvm/llvm-project/issues/61447
The root cause of the above problem is that when we write a declaration,
we need to lookup all the redeclarations in the imported modules. Then
it will be pretty slow if there are too many redeclarations in different
modules. This patch doesn't solve the porblem.
What the patchs mitigated is, when we writing a named module, we shouldn't
write the declarations from GMF if it is unreferenced **in current
module unit**. The difference here is that, if the declaration is used
in the imported modules, we used to emit it as an update. But we
definitely want to avoid that after this patch.
For that reproducer in
https://github.com/llvm/llvm-project/issues/61447, it used to take 2.5s
to compile and now it only takes 0.49s to compile, which is a big win.
Close https://github.com/llvm/llvm-project/issues/87609
We tried to profile the body of the lambda expressions in
https://reviews.llvm.org/D153957. But as the original comments show,
it is indeed dangerous. After we tried to skip calculating the ODR
hash values recently, we have fall into this trap twice.
So in this patch, I choose to not profile the body of the lambda
expression. The signature of the lambda is still profiled.
In PR #79382, I need to add a new type that derives from
ConstantArrayType. This means that ConstantArrayType can no longer use
`llvm::TrailingObjects` to store the trailing optional Expr*.
This change refactors ConstantArrayType to store a 60-bit integer and
4-bits for the integer size in bytes. This replaces the APInt field
previously in the type but preserves enough information to recreate it
where needed.
To reduce the number of places where the APInt is re-constructed I've
also added some helper methods to the ConstantArrayType to allow some
common use cases that operate on either the stored small integer or the
APInt as appropriate.
Resolves#85124.
Consider the following code:
```c
bool const inf = (1.0/0.0);
```
When trying to emit the initialiser of this variable in C23, we end up
hitting a code path in codegen in `VarDecl::evaluateValueImpl()` where
we check for `IsConstantInitialization && (Ctx.getLangOpts().CPlusPlus
|| Ctx.getLangOpts().C23)`, and if that is the case and we emitted any
notes, constant evaluation fails, and as a result, codegen issues this
error:
```
<source>:1:12: error: cannot compile this static initializer yet
1 | bool const inf = (1.0/0.0);
|
```
As a fix, only fail in C23 mode if we’re initialising a `constexpr`
variable.
This fixes#84784.
Previously we disabled to compute ODR hash for declarations from the
global module fragment. However, we missed the case that the functions
lives in the concept requiments (see the attached the test files for
example). And the mismatch causes the potential crashment.
Due to we will set the function body as lazy after we deserialize it and
we will only take its body when needed. However, we don't allow to take
the body during deserializing. So it is actually potentially problematic
if we set the body as lazy first and computing the hash value of the
function, which requires to deserialize its body. So we will meet a
crash here.
This patch tries to solve the issue by not taking the body of the
function from GMF. Note that we can't skip comparing the constraint
expression from the GMF directly since it is an key part of the
function selecting and it may be the reason why we can't return 0
directly for `FunctionDecl::getODRHash()` from the GMF.
Make TopLevelStmtDecl a DeclContext so that variables defined in statements
are attached to the TopLevelDeclContext. This fixes redefinition errors
from variables declared in if conditions and for-init statements. These
must be local to the inner context (C++ 3.3.2p4), but they had generated
definitions on global scope instead.
This PR makes the TopLevelStmtDecl looking more like a FunctionDecl and
that's fine because the FunctionDecl is very close in terms of semantics.
Additionally, ActOnForStmt() requires a CompoundScope when processing a
NullStmt body.
---------
Co-authored-by: Vassil Vassilev <v.g.vassilev@gmail.com>