This is one of the many PRs to fix errors with LLVM_ENABLE_WERROR=on.
Built by GCC 11.
Fix warnings:
llvm-project/llvm/lib/Target/X86/X86FastISel.cpp: In member function
‘virtual bool
{anonymous}::X86FastISel::fastLowerCall(llvm::FastISel::CallLoweringInfo&)’:
llvm-project/llvm/lib/Target/X86/X86FastISel.cpp:3547: error: enumerated
and non-enumerated type in conditional expression [-Werror=extra]
3547 | MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
The comment and code here seems to match getTypeForExtReturn. The
history shows that at the time this code was added, similar code existed
in SelectionDAGBuilder. SelectionDAGBuiler code has since been
refactored into getTypeForExtReturn.
This patch makes FastISel match SelectionDAGBuilder.
The test changes are because X86 has customization of
getTypeForExtReturn. So now we only extend returns to i8.
Stumbled onto this difference by accident.
Vectors are always bit-packed and don't respect the elements' alignment
requirements. This is different from arrays. This means offsets of
vector GEPs need to be computed differently than offsets of array GEPs.
This PR fixes many places that rely on an incorrect pattern
that always relies on `DL.getTypeAllocSize(GTI.getIndexedType())`.
We replace these by usages of `GTI.getSequentialElementStride(DL)`,
which is a new helper function added in this PR.
This changes behavior for GEPs into vectors with element types for which
the (bit) size and alloc size is different. This includes two cases:
* Types with a bit size that is not a multiple of a byte, e.g. i1.
GEPs into such vectors are questionable to begin with, as some elements
are not even addressable.
* Overaligned types, e.g. i16 with 32-bit alignment.
Existing tests are unaffected, but a miscompilation of a new test is fixed.
---------
Co-authored-by: Nikita Popov <github@npopov.com>
For non-GlobalValue references, the small and medium code models can use
32 bit constants.
For GlobalValue references, use TargetMachine::isLargeGlobalObject().
Look through aliases for determining if a GlobalValue is small or large.
Even the large code model can reference small objects with 32 bit
constants as long as we're in no-pic mode, or if the reference is offset
from the GOT.
Original commit broke the build...
First reland broke large PIC builds referencing small data since it was using GOTOFF as a 32-bit constant.
For non-GlobalValue references, the small and medium code models can use
32 bit constants.
For GlobalValue references, use TargetMachine::isLargeGlobalObject().
Look through aliases for determining if a GlobalValue is small or large.
Even the large code model can reference small objects with 32 bit
constants as long as we're in no-pic mode, or if the reference is offset
from the GOT.
Original commit broke the build...
For non-GlobalValue references, the small and medium code models can use
32 bit constants.
For GlobalValue references, use TargetMachine::isLargeGlobalObject().
Look through aliases for determining if a GlobalValue is small or large.
Even the large code model can reference small objects with 32 bit
constants as long as we're in no-pic mode, or if the reference is offset
from the GOT.
The WebKit Calling Convention was created specifically for the WebKit
FTL. FTL
doesn't use LLVM anymore and therefore this calling convention is
obsolete.
This commit removes the WebKit CC, its associated tests, and
documentation.
This matches how a SelectionDAG::getExternalSymbol node is lowered. On x86-32, a
function call in -fno-pic code should emit R_386_PC32 (since ebx is not set up).
When linked as -shared (problematic!), the generated text relocation will work.
Ideally, we should mark IR intrinsics created in
CodeGenFunction::EmitBuiltinExpr as dso_local, but the code structure makes it
not very feasible.
Fix#51078
This caused compiler assertions, see comment on
https://reviews.llvm.org/D150107.
This also reverts the dependent follow-up change:
> [X86] Remove patterns for ADD/AND/OR/SUB/XOR/CMP with immediate 8 and optimize during MC lowering, NFCI
>
> This is follow-up of D150107.
>
> In addition, the function `X86::optimizeToFixedRegisterOrShortImmediateForm` can be
> shared with project bolt and eliminates the code in X86InstrRelaxTables.cpp.
>
> Differential Revision: https://reviews.llvm.org/D150949
This reverts commit 2ef8ae134828876ab3ebda4a81bb2df7b095d030 and
5586bc539acb26cb94e461438de01a5080513401.
This is follow-up of D150107.
In addition, the function `X86::optimizeToFixedRegisterOrShortImmediateForm` can be
shared with project bolt and eliminates the code in X86InstrRelaxTables.cpp.
Differential Revision: https://reviews.llvm.org/D150949
Some applications make heavy use of the crc32 operation (e.g., as part
of a hash function), so having a FastISel path avoids fallbacks to
SelectionDAG and improves compile times, in our case by ~1.5%.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D148023
The new methods return a range for easier iteration. Use them everywhere
instead of getImplicitUses, getNumImplicitUses, getImplicitDefs and
getNumImplicitDefs. A future patch will remove the old methods.
In some use cases the new methods are less efficient because they always
have to scan the whole uses/defs array to count its length, but that
will be fixed in a future patch by storing the number of implicit
uses/defs explicitly in MCInstrDesc. At that point there will be no need
to 0-terminate the arrays.
Differential Revision: https://reviews.llvm.org/D142215
I'm planning to deprecate and eventually remove llvm::empty.
I thought about replacing llvm::empty(x) with std::empty(x), but it
turns out that all uses can be converted to x.empty(). That is, no
use requires the ability of std::empty to accept C arrays and
std::initializer_list.
Differential Revision: https://reviews.llvm.org/D133677
Propagate PC sections metadata to MachineInstr when FastISel is doing
instruction selection.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130884
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c95494ff05be2a613129110c9bcf17f6c13 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
This resolves problems reported in commit 1a20252978c76cf2518aa45b175a9e5d6d36c4f0.
1. Promote to float lowering for nodes XINT_TO_FP
2. Bail out f16 from shuffle combine due to vector type is not legal in the version
GCC and Clang/LLVM will support `_Float16` on X86 in C/C++, following
the latest X86 psABI. (https://gitlab.com/x86-psABIs)
_Float16 arithmetic will be performed using native half-precision. If
native arithmetic instructions are not available, it will be performed
at a higher precision (currently always float) and then truncated down
to _Float16 immediately after each single arithmetic operation.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D107082
Don't try to directly use the with.overflow flag result in a cmov
if we need to materialize constants between the instruction
producing the overflow flag and the cmov. The current code is
careful to check that there are no other instructions in between,
but misses the constant materialization case (which may clobber
eflags via xor or constant expression evaluation).
Fixes https://github.com/llvm/llvm-project/issues/54369.
Differential Revision: https://reviews.llvm.org/D122825
This is used for f16 emulation. We emulate f16 for SSE2 targets and
above. Refactoring makes the future code to be more clean.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D122475
For tagged-globals, we only need to disable relaxation for globals that
we actually tag. With this patch function pointer relocations, which
we do not instrument, can be relaxed.
This patch also makes tagged-globals work properly with LTO, as
-Wa,-mrelax-relocations=no doesn't work with LTO.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D113220
Be more consistent in the naming convention for the various RET instructions to specify in terms of bitwidth.
Helps prevent future scheduler model mismatches like those that were only addressed in D44687.
Differential Revision: https://reviews.llvm.org/D113302
Based on the reasoning of D53903, register operands of DBG_VALUE are
invariably treated as RegState::Debug operands. This change enforces
this invariant as part of MachineInstr::addOperand so that all passes
emit this flag consistently.
RegState::Debug is inconsistently set on DBG_VALUE registers throughout
LLVM. This runs the risk of a filtering iterator like
MachineRegisterInfo::reg_nodbg_iterator to process these operands
erroneously when not parsed from MIR sources.
This issue was observed in the development of the llvm-mos fork which
adds a backend that relies on physical register operands much more than
existing targets. Physical RegUnit 0 has the same numeric encoding as
$noreg (indicating an undef for DBG_VALUE). Allowing debug operands into
the machine scheduler correlates $noreg with RegUnit 0 (i.e. a collision
of register numbers with different zero semantics). Eventually, this
causes an assert where DBG_VALUE instructions are prohibited from
participating in live register ranges.
Reviewed By: MatzeB, StephenTozer
Differential Revision: https://reviews.llvm.org/D110105