This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
Previously we would crash with an assertion failure (unreachable code)
whenever we had an error in JITLink. Change this to use JITLink API
correctly and let it print the error to output, so we can read and more
easily diagnose what's happening.
Before this patch:
unexpected abandoned allocation
UNREACHABLE executed at...
After this patch:
BOLT-ERROR: JITLink failed: In graph in-memory object file, section
.local.foo: relocation target .text + 0x1 at address 0xa7c00000 is out
of range of BranchPCRel32 fixup at 0x132d40f1 (bar, 0x132d40f0 + 0x1)
RuntimeDyld has been deprecated in favor of JITLink. [1] This patch
replaces all uses of RuntimeDyld in BOLT with JITLink.
Care has been taken to minimize the impact on the code structure in
order to ease the inspection of this (rather large) changeset. Since
BOLT relied on the RuntimeDyld API in multiple places, this wasn't
always possible though and I'll explain the changes in code structure
first.
Design note: BOLT uses a JIT linker to perform what essentially is
static linking. No linked code is ever executed; the result of linking
is simply written back to an executable file. For this reason, I
restricted myself to the use of the core JITLink library and avoided ORC
as much as possible.
RuntimeDyld contains methods for loading objects (loadObject) and symbol
lookup (getSymbol). Since JITLink doesn't provide a class with a similar
interface, the BOLTLinker abstract class was added to implement it. It
was added to Core since both the Rewrite and RuntimeLibs libraries make
use of it. Wherever a RuntimeDyld object was used before, it was
replaced with a BOLTLinker object.
There is one major difference between the RuntimeDyld and BOLTLinker
interfaces: in JITLink, section allocation and the application of fixups
(relocation) happens in a single call (jitlink::link). That is, there is
no separate method like finalizeWithMemoryManagerLocking in RuntimeDyld.
BOLT used to remap sections between allocating (loadObject) and linking
them (finalizeWithMemoryManagerLocking). This doesn't work anymore with
JITLink. Instead, BOLTLinker::loadObject accepts a callback that is
called before fixups are applied which is used to remap sections.
The actual implementation of the BOLTLinker interface lives in the
JITLinkLinker class in the Rewrite library. It's the only part of the
BOLT code that should directly interact with the JITLink API.
For loading object, JITLinkLinker first creates a LinkGraph
(jitlink::createLinkGraphFromObject) and then links it (jitlink::link).
For the latter, it uses a custom JITLinkContext with the following
properties:
- Use BOLT's ExecutableFileMemoryManager. This one was updated to
implement the JITLinkMemoryManager interface. Since BOLT never
executes code, its finalization step is a no-op.
- Pass config: don't use the default target passes since they modify
DWARF sections in a way that seems incompatible with BOLT. Also run a
custom pre-prune pass that makes sure sections without symbols are not
pruned by JITLink.
- Implement symbol lookup. This used to be implemented by
BOLTSymbolResolver.
- Call the section mapper callback before the final linking step.
- Copy symbol values when the LinkGraph is resolved. Symbols are stored
inside JITLinkLinker to ensure that later objects (i.e.,
instrumentation libraries) can find them. This functionality used to
be provided by RuntimeDyld but I did not find a way to use JITLink
directly for this.
Some more minor points of interest:
- BinarySection::SectionID: JITLink doesn't have something equivalent to
RuntimeDyld's Section IDs. Instead, sections can only be referred to
by name. Hence, SectionID was updated to a string.
- There seem to be no tests for Mach-O. I've tested a small hello-world
style binary but not more than that.
- On Mach-O, JITLink "normalizes" section names to include the segment
name. I had to parse the section name back from this manually which
feels slightly hacky.
[1] https://reviews.llvm.org/D145686#4222642
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D147544
For empty sections, RuntimeDyld always allocates 1 byte but leaves it
uninitialized. This causes the contents of some output sections to be
non-deterministic.
Note that this issue is also solved by D147544.
Fixes#59008
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D149243
Simplify the logic of handling sections in BOLT. This change brings more
direct and predictable mapping of BinarySection instances to sections in
the input and output files.
* Only sections from the input binary will have a non-null SectionRef.
When a new section is created as a copy of the input section,
its SectionRef is reset to null.
* RewriteInstance::getOutputSectionName() is removed as the section name
in the output file is now defined by BinarySection::getOutputName().
* Querying BinaryContext for sections by name uses their original name.
E.g., getUniqueSectionByName(".rodata") will return the original
section even if the new .rodata section was created.
* Input file sections (with relocations applied) are emitted via MC with
".bolt.org" prefix. However, their name in the output binary is
unchanged unless a new section with the same name is created.
* New sections are emitted internally with ".bolt.new" prefix if there's
a name conflict with an input file section. Their original name is
preserved in the output file.
* Section header string table is properly populated with section names
that are actually used. Previously we used to include discarded
section names as well.
* Fix the problem when dynamic relocations were propagated to a new
section with a name that matched a section in the input binary.
E.g., the new .rodata with jump tables had dynamic relocations from
the original .rodata.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D135494
When we derive EFMM from SectionMemoryManager, it brings into EFMM extra
functionality, such as the registry of exception handling sections,
page permission management, etc. Such functionality is of no use to
llvm-bolt and can even be detrimental (see
https://github.com/llvm/llvm-project/issues/56726).
Change the base class of ExecutableFileMemoryManager to MemoryManager,
avoid registering EH sections, and skip memory finalization.
Fixes#56726
Reviewed By: yota9
Differential Revision: https://reviews.llvm.org/D133994
Summary:
Moves source files into separate components, and make explicit
component dependency on each other, so LLVM build system knows how to
build BOLT in BUILD_SHARED_LIBS=ON.
Please use the -c merge.renamelimit=230 git option when rebasing your
work on top of this change.
To achieve this, we create a new library to hold core IR files (most
classes beginning with Binary in their names), a new library to hold
Utils, some command line options shared across both RewriteInstance
and core IR files, a new library called Rewrite to hold most classes
concerned with running top-level functions coordinating the binary
rewriting process, and a new library called Profile to hold classes
dealing with profile reading and writing.
To remove the dependency from BinaryContext into X86-specific classes,
we do some refactoring on the BinaryContext constructor to receive a
reference to the specific backend directly from RewriteInstance. Then,
the dependency on X86 or AArch64-specific classes is transfered to the
Rewrite library. We can't have the Core library depend on targets
because targets depend on Core (which would create a cycle).
Files implementing the entry point of a tool are transferred to the
tools/ folder. All header files are transferred to the include/
folder. The src/ folder was renamed to lib/.
(cherry picked from FBD32746834)