This patch adds a new vector.step operation to the Vector dialect. It
produces a linear sequence of index values from 0 to N, where N is the
number of elements in the result vector, and can be used to create
vectors of indices.
It supports both fixed-width and scalable vectors. For fixed the
canonical representation is `arith.constant dense<[0, .., N]>`. A
scalable step cannot be represented as a constant and is lowered to the
`llvm.experimental.stepvector` intrinsic [1].
This op enables scalable vectorization of linalg.index ops, see #96778. It can
also be used in the SparseVectorizer in-place of lower-level stepvector
intrinsic, see [2] (patch to follow).
[1] https://llvm.org/docs/LangRef.html#llvm-experimental-stepvector-intrinsic
[2] acf675b63f/mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp (L385-L388)
This commit adds a new operation to the vector dialect:
`vector.from_elements`
The op constructs a new vector from a given list of scalar values. It is
similar to `tensor.from_elements`.
```mlir
%0 = vector.from_elements %a, %b, %c, %a, %a, %a : vector<2x3xf32>
```
Constructing a new vector from elements was tedious before this op
existed: a typical way was to define an `arith.constant ... :
vector<...>`, followed by a chain of `vector.insert`.
Folders/canonicalizations are added that can fold `vector.extract` ops
and convert the `vector.from_elements` op into a `vector.splat` op.
The LLVM lowering generates an `llvm.mlir.undef`, followed by a sequence
of scalar insertions in the form of `llvm.insertelement`. Only 0-D and
1-D vectors are currently supported in the LLVM lowering.
LLVM's Vector Predication Intrinsics require an explicit vector length
parameter:
https://llvm.org/docs/LangRef.html#vector-predication-intrinsics.
For a scalable vector type, this should be caculated as VectorScaleOp
multiplied by base vector length, e.g.: for <[4]xf32> we should return:
vscale * 4.
This patch implements the lowering of vector.deinterleave
for 1D vectors.
For fixed vector types, the operation is lowered to two
llvm shufflevector operations. One for even indexed
elements and the other for odd indexed elements. A poison
operation is used to satisfy the parameters of the
shufflevector parameters.
For scalable vectors, the llvm vector.deinterleave2
intrinsic is used for lowering. As such the results
found by extraction and used to form the result
struct for the intrinsic.
This patch is moving out following intrinsics:
* vector.interleave2/deinterleave2
* vector.reverse
* vector.splice
from the experimental namespace.
All these intrinsics exist in LLVM for more than a year now, and are
widely used, so should not be considered as experimental.
The lowering of n-D vector.extract/insert ops to LLVM is not supported
but if one of these accidentally reaches the vector-to-llvm conversion
patterns, we end up with a kind of puzzling crash. This PR fixes that
crash and gracefully bails out in those cases.
Since the vector.print str provides no punctuation control, it is
slightly more flexible to let the client of this operation decide
whether there should be a trailing newline. This allows for printing
like
vector.print str "nse = "
vector.print %nse : index
as
nse = 42
Since vector loads and stores from scalar memrefs translate to
llvm.load/store, add the ability to tag said loads and stores as
nontemporal. This mirrors functionality available in memref.load/store.
This is to avoid confusion when dealing with reduction/combining kinds.
For example, see a recent PR comment:
https://github.com/llvm/llvm-project/pull/75846#discussion_r1430722175.
Previously, they were picked to mostly mirror the names of the llvm
vector reduction intrinsics:
https://llvm.org/docs/LangRef.html#llvm-vector-reduce-fmin-intrinsic. In
isolation, it was not clear if `<maxf>` has `arith.maxnumf` or
`arith.maximumf` semantics. The new reduction kind names map 1:1 to
arith ops, which makes it easier to tell/look up their semantics.
Because both the vector and the gpu dialect depend on the arith dialect,
it's more natural to align names with those in arith than with the
lowering to llvm intrinsics.
Issue: https://github.com/llvm/llvm-project/issues/72354
This extends `LLVM_IntrOpBase` so that it can be passed a list of
`immArgPositions` and a list (of the same length) of `immArgAttrNames`.
`immArgPositions` contains the positions of `immargs` on the LLVM IR
intrinsic, and `immArgAttrNames` maps those to a corresponding MLIR
attribute.
This allows modeling LLVM `immargs` as MLIR attributes, which is the
closest match semantically (and had already been done manually for the
LLVM dialect intrinsics).
This has two upsides:
* It's slightly easier to implement intrinsics with immargs now
(especially if they make use of other features, such as overloads)
* It clearly defines that `immargs` should map to attributes, before
there was no mention of `immargs` in LLVMOpBase.td, so implementing them
was unclear
This works with other features of the `LLVM_IntrOpBase`, so `immargs`
can be marked as overloaded too (which is used in some intrinsics).
As part of this patch (and to test correctness) existing intrinsics have
been updated to use these new parameters.
This also uncovered a few issues with the
`llvm.intr.vector.insert/extract` intrinsics. First, the argument order
for insert did not match the LLVM intrinsic, and secondly, both were
missing a mlirBuilder (so failed to import from LLVM IR). This is
corrected with this patch (and a test case added).
Printing strings within integration tests is currently quite annoyingly
verbose, and can't be tucked into shared helpers as the types depend on
the length of the string:
```
llvm.mlir.global internal constant @hello_world("Hello, World!\0")
func.func @entry() {
%0 = llvm.mlir.addressof @hello_world : !llvm.ptr<array<14 x i8>>
%1 = llvm.mlir.constant(0 : index) : i64
%2 = llvm.getelementptr %0[%1, %1]
: (!llvm.ptr<array<14 x i8>>, i64, i64) -> !llvm.ptr<i8>
llvm.call @printCString(%2) : (!llvm.ptr<i8>) -> ()
return
}
```
So this patch adds a simple extension to `vector.print` to simplify
this:
```
func.func @entry() {
// Print a vector of characters ;)
vector.print str "Hello, World!"
return
}
```
Most of the logic for this is now shared with `cf.assert` which already
does something similar.
Depends on #68694
This revision pipes the fastmath attribute support through the
vector.reduction op. This seemingly simple first step already requires
quite some genuflexions, file and builder reorganization. In the
process, retire the boolean reassoc flag deep in the LLVM dialect
builders and just use the fastmath attribute.
During conversions, templated builders for predicated intrinsics are
partially cleaned up. In the future, to finalize the cleanups, one
should consider adding fastmath to the VPIntrinsic ops.
This patch is part of a larger initiative aimed at fixing floating-point `max` and `min` operations in MLIR: https://discourse.llvm.org/t/rfc-fix-floating-point-max-and-min-operations-in-mlir/72671.
Within LLVM, there are no masked reduction counterparts for vector reductions such as `fmaximum` and `fminimum`.
More information can be found here: https://github.com/llvm/llvm-project/issues/64940#issuecomment-1690694156.
To address this issue in MLIR, where we need to generate appropriate lowerings for these cases, we employ regular non-masked intrinsics.
However, we modify the input vector using the `arith.select` operation to effectively deactivate undesired elements using a "neutral mask value".
The neutral mask value is the smallest possible value for the `fmaximum` reduction and the largest possible value for the `fminimum` reduction.
Depends on D158618
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D158773
ConversionPatterns do not (and should not) modify the type converter that they are using.
* Make `ConversionPattern::typeConverter` const.
* Make member functions of the `LLVMTypeConverter` const.
* Conversion patterns take a const type converter.
* Various helper functions (that are called from patterns) now also take a const type converter.
Differential Revision: https://reviews.llvm.org/D157601
Reland of the original patch after updating the Python binding tests,
a few CUDA/GPU MLIR tests, and ensuring the assembly format is
round-trippable.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print punctuation <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
Reland of the original patch after updating the Python binding tests and
a few CUDA/GPU MLIR tests.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
This reverts commit 3875804a0725c6490b4c0e76e1c0e1e0dbccedf4.
This caused some test failures for the MLIR python bindings. Reverting
until those are addressed.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
This patch improves the lowering by changing target LLVM intrinsics from
`reduce.fmax` and `reduce.fmin`,
which have different semantic for handling NaN,
to `reduce.fmaximum` and `reduce.fminimum` ones.
Fixes#63969
Depends on D155869
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D155877
`DenseI64ArrayAttr` provides a better API than `I64ArrayAttr`. E.g., accessors returning `ArrayRef<int64_t>` (instead of `ArrayAttr`) are generated.
Differential Revision: https://reviews.llvm.org/D156684
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
Vector dialect patterns have grown enormously in the past year to a point where they are now impenetrable.
Start reorganizing them towards finer-grained control.
Differential Revision: https://reviews.llvm.org/D146736
Love or hate it, but the vector.print operation was the very
first operation that actually made "end-to-end" CHECK integration
testing possible for MLIR. This revision adds support for
the -until recently- less common but important floating-point
types f16 and bf16.
This will become useful for accelerator specific testing (e.g. NVidia GPUs)
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D145207
This patch adds masking support for more contraction flavors including those
with any combiner operation (add, mul, min, max, and, or, etc.) and
regular matmul contractions.
Combiner operations that are performing vertical reductions (and,
therefore, they are not represented with a horizontal reduction
operation) can be executed unmasked. However, the previous value of
the accumulator must be propagated for lanes that shouldn't accumulate.
We achieve this goal by introducing a select operation after the
accumulator to choose between the combined and the previous accumulator
value. This design decision is made to avoid introducing masking support
to all the arithmetic and logical operations in the Arith dialect. VP
intrinsics do not support pass-thru values either so we would have to
generate the same sequence when lowering to LLVM. The op + select
pattern is peepholed by some backend with native masking support for those
operations.
Consequently, this patch removes masking support from the vector.fma
operation to follow the same approach for all the combiner operations.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D144239
Plain `getVectorType()` can be quite confusing and error-prone
given that, well, vector ops always work on vector types, and
it can commonly involve both source and result vectors. So this
commit makes various such accessor methods to be explicit w.r.t.
source or result vectors.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D144159
This patch adds support for masking vector.contract ops with the
vector.mask approach. This also includes the lowering of vector.contract
through the vector.outerproduct path to LLVM. For now, this only adds
support for one of the many potential flavors of
vector.contract/vector.outerproduct but unsupported cases will fail
gratefully.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D143965
This patch adds the conversion patterns to lower masked reduction
operations to the corresponding vp intrinsics in LLVM.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D142177
Remapping memory spaces is a function often needed in type
conversions, most often when going to LLVM or to/from SPIR-V (a future
commit), and it is possible that such remappings may become more
common in the future as dialects take advantage of the more generic
memory space infrastructure.
Currently, memory space remappings are handled by running a
special-purpose conversion pass before the main conversion that
changes the address space attributes. In this commit, this approach is
replaced by adding a notion of type attribute conversions
TypeConverter, which is then used to convert memory space attributes.
Then, we use this infrastructure throughout the *ToLLVM conversions.
This has the advantage of loosing the requirements on the inputs to
those passes from "all address spaces must be integers" to "all
memory spaces must be convertible to integer spaces", a looser
requirement that reduces the coupling between portions of MLIR.
ON top of that, this change leads to the removal of most of the calls
to getMemorySpaceAsInt(), bringing us closer to removing it.
(A rework of the SPIR-V conversions to use this new system will be in
a folowup commit.)
As a note, one long-term motivation for this change is that I would
eventually like to add an allocaMemorySpace key to MLIR data layouts
and then call getMemRefAddressSpace(allocaMemorySpace) in the
relevant *ToLLVM in order to ensure all alloca()s, whether incoming or
produces during the LLVM lowering, have the correct address space for
a given target.
I expect that the type attribute conversion system may be useful in
other contexts.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D142159
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716