The production buildbot master apparently has not yet been restarted
since https://github.com/llvm/llvm-zorg/pull/393 landed.
This reverts commit 96d1baedefc3581b53bc4389bb171760bec6f191.
Remove the FLANG_INCLUDE_RUNTIME option which was replaced by
LLVM_ENABLE_RUNTIMES=flang-rt.
The FLANG_INCLUDE_RUNTIME option was added in #122336 which disables the
non-runtimes build instructions for the Flang runtime so they do not
conflict with the LLVM_ENABLE_RUNTIMES=flang-rt option added in #110217.
In order to not maintain multiple build instructions for the same thing,
this PR completely removes the old build instructions (effectively
forcing FLANG_INCLUDE_RUNTIME=OFF).
As per discussion in
https://discourse.llvm.org/t/buildbot-changes-with-llvm-enable-runtimes-flang-rt/83571/2
we now implicitly add LLVM_ENABLE_RUNTIMES=flang-rt whenever Flang is
compiled in a bootstrapping (non-standalone) build. Because it is
possible to build Flang-RT separately, this behavior can be disabled
using `-DFLANG_ENABLE_FLANG_RT=OFF`. Also see the discussion an
implicitly adding runtimes/projects in #123964.
Mostly mechanical changes in preparation of extracting the Flang-RT
"subproject" in #110217. This PR intends to only move pre-existing files
to the new folder structure, with no behavioral change. Common files
(headers, testing, cmake) shared by Flang-RT and Flang remain in
`flang/`.
Some cosmetic changes and files paths were necessary:
* Relative paths to the new path for the source files and
`add_subdirectory`.
* Add the new location's include directory to `include_directories`
* The unittest/Evaluate directory has unitests for flang-rt and Flang. A
new `CMakeLists.txt` was introduced for the flang-rt tests.
* Change the `#include` paths relative to the include directive
* clang-format on the `#include` directives
* Since the paths are part if the copyright header and include guards, a
script was used to canonicalize those
* `test/Runtime` and runtime tests in `test/Driver` are moved, but the
lit.cfg.py mechanism to execute the will only be added in #110217.
Explicitly disable EH & RTTI when building Flang runtime library. This
fixes the runtime built when Flang is built standalone against system
LLVM that was compiled with EH & RTTI enabled.
I think this change may be sufficient to lift the top-level
`LLVM_ENABLE_EH` restriction from Flang. However, I'd prefer if somebody
more knowledgeable decided on that.
Following the conclusion of the
[RFC](https://discourse.llvm.org/t/rfc-names-for-flang-rt-libraries/84321),
rename Flang's runtime libraries as follows:
* libFortranRuntime.(a|so) to libflang_rt.runtime.(a|so)
* libFortranFloat128Math.a to libflang_rt.quadmath.a
* libCufRuntime_cuda_${CUDAToolkit_VERSION_MAJOR}.(a|so) to
libflang_rt.cuda_${CUDAToolkit_VERSION_MAJOR}.(a|so)
This follows the same naming scheme as Compiler-RT libraries
(`libclang_rt.${component}.(a|so)`). It provides some consistency
between Flang's runtime libraries for current and potential future
library components.
Avoid using the same library for runtime and compiler. `FortranDecimal`
was used in two ways:
1. As an auxiliary library needed for `libFortranRuntime.a`. This patch
adds the two source files of FortranDecimal directly into
FortranRuntime, so `FortranRuntime` is not used anymore.
2. As a library used by the Flang compiler. As the only remaining use of
the library, extra CMake code to make it compatible with the runtime can
be removed.
Before this PR, `enable_cuda_compilation` is applied to `FortranDecimal`
which causes everything that links to it, including flang (the
compiler), to depend on libcudart when CUDA support is enabled.
Having two runtime library just makes everything more complicated while
the user ideally should not be concerned with how the runtime is
structured internally. Some logic was copied for FortranDecimal because
of this, such as the ability to be compiled out-of tree
(b75a3c9f31c1ffdc9856aee32991d8129b372ee7) which is undocumented, the
logic to link against the various versions of Microsofts runtime library
(#70833), and avoiding dependency on the C++ runtime
(7783bba22c7add678d796741d30669c73159b3d8).
This does a global rename from `flang-new` to `flang`. I also
removed/changed any TODOs that I found related to making this change.
---------
Co-authored-by: H. Vetinari <h.vetinari@gmx.com>
Co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
When building FortranRuntime out of tree on aarch64, the list of include
directories for the files comming from FortranFloat128MathILib
has to contain flang/runtime. I did this via
INTERFACE_INCLUDE_DIRECTORIES property.
Add allocators for CUDA fortran allocation on the device. 3 allocators
are added for pinned, device and managed/unified memory allocation.
`CUFRegisterAllocator()` is called to register the allocators in the
allocator registry added in #100690.
Since this require CUDA, a cmake option `FLANG_CUF_RUNTIME` is added to
conditionally build these.
This patch enhances the descriptor with the ability to have specialized
allocator. The allocators are registered in a dedicated registry and the
index of the desired allocator is stored in the descriptor. The default
allocator, std::malloc, is registered at index 0.
In order to have this allocator index in the descriptor, the f18Addendum
field is repurposed to be able to hold the presence flag for the
addendum (lsb) and the allocator index.
Since this is a change in the semantic and name of the 7th field of the
descriptor, the CFI_VERSION is bumped to the date of the initial change.
This patch only adds the ability to have this features as part of the
descriptor but does not add specific allocator yet. CUDA fortran will be
the first user of this feature to allocate descriptor data in the
different type of device memory base on the CUDA attribute.
---------
Co-authored-by: Slava Zakharin <szakharin@nvidia.com>
Makefile-based builds did not have proper dependencies to built the
FortranRuntime target after Flang new is available. This PR introduces a
dependency to ensure that this is the case. Relates to PR #95388.
---------
Co-authored-by: Michael Kruse <github@meinersbur.de>
Moves definitions of the kind arrays into a Fortran MODULE to not only
emit the MOD file, but also compile that MODULE file into an object
file. This file is then linked into libFortranRuntime.so.
Eventually this workaround PR shoud be redone and a proper runtime build
should be setup that will then also compile Fortran MODULE files.
Fixes#89403
---------
Co-authored-by: Valentin Clement (バレンタイン クレメン) <clementval@gmail.com>
Co-authored-by: Michael Kruse <github@meinersbur.de>
Update the folder titles for targets in the monorepository that have not
seen taken care of for some time. These are the folders that targets are
organized in Visual Studio and XCode (`set_property(TARGET <target>
PROPERTY FOLDER "<title>")`) when using the respective CMake's IDE
generator.
* Ensure that every target is in a folder
* Use a folder hierarchy with each LLVM subproject as a top-level folder
* Use consistent folder names between subprojects
* When using target-creating functions from AddLLVM.cmake, automatically
deduce the folder. This reduces the number of
`set_property`/`set_target_property`, but are still necessary when
`add_custom_target`, `add_executable`, `add_library`, etc. are used. A
LLVM_SUBPROJECT_TITLE definition is used for that in each subproject's
root CMakeLists.txt.
For testing purposes the implementations of the output APIs like
OutputInteger32 have been simply constructing descriptors and executing
the operation through the general DescriptorIO template. This patch
decouples those APIs from that mechanism so that programs using simple
"PRINT *" statements for output can link to a smaller portion of the I/O
runtime support library. (This is the only form of I/O accepted in GPU
device code by previous CUDA Fortran and Fortran OpenACC compilers.)
Apparently, nvcc does not compile for device the routines whose
definitions
are not marked with device attribute (note that the forward declarations
are already marked). It looks like it is different for class members,
i.e. marking just the declarations is enough.
This patch changes the behaviour for flang to only create and link to a
`main` entry point when the Fortran code has a program statement in it.
This means that flang-new can be used to link even when the program is
a mixed C/Fortran code with `main` present in C and no entry point
present in Fortran.
This also removes the `-fno-fortran-main` flag as this no longer has any
functionality.
This is to experiment with distributing F18 runtime CUDA library
in the form of a pure PTX library. The change is under
FLANG_EXPERIMENTAL_CUDA_RUNTIME CMake control.
Added `FLANG_LIBCUDACXX_PATH` CMake variable to specify
installation of header-only libcudacxx library.
If it is specified, the `<cuda/std/variant>` is used to provide
implementation of `std::variant`.
Supports the REDUCE() transformational intrinsic function of Fortran
(see F'2023 16.9.173) in a manner similar to the existing support for
SUM(), PRODUCT(), &c. There are APIs for total reductions to scalar
results, and APIs for partial reductions that reduce the rank of the
argument by one.
This implementation requires more functions than other reductions
because the various possible types of the user-supplied OPERATION=
function need to be elaborated.
Once the basic API in reduce.h has been approved, later patches will
implement lowering.
REDUCE() is primarily for completeness, not portability; only one other
Fortran compiler implements this F'2018 feature today, and only some
types work correctly with it.
This commit adds required files into the offload build closure,
which means adding RT_API_ATTRS and other markers.
The implementation does not work for CUDA yet, because of
std::variant,swap,reverse usage. These issues will be resolved
separately (e.g. by using libcudacxx header files).
A file unit is emulated via a temporary buffer that accumulates
the output, which is printed out via std::printf at the end
of the IO statement. This implementation will be used for the offload
devices.
For `LDBL_MANT_DIG == 113` targets the FortranFloat128Math library
is just an interface library that provides sources and compilation
options to be used for building FortranRuntime - there are not extra
dependencies on other libraries, so it can be a part of FortranRuntime,
which helps to avoid extra linking steps in the compiler driver.
Targets with __float128 support in libc will also use this path.
Other targets, where the math support comes from
FLANG_RUNTIME_F128_MATH_LIB,
FortranFloat128Math is built as a standalone static library,
and the compiler driver needs to conduct the linking.
Flang APIs for COMPLEX(16) are just thin C wrappers around
the C math functions. Flang uses C _Complex ABI for passing/returning
COMPLEX values, so the runtime is aligned to this.
Implemented few entry points for REAL(16) math in FortranF128Math
static library. It is a thin wrapper around GNU libquadmath.
Flang driver can always link it, and the dependencies will
be brought in as needed.
The final Fortran program/library that uses any of the entry points
will depend on the underlying third-party library - this dependency
has to be resolved somehow. I added FLANG_RUNTIME_F128_MATH_LIB
CMake control so that the compiler driver and the runtime library
can be built using the same third-party library: this way the linker
knows which dependency to link in (under --as-needed).
The compiler distribution should specify which third-party library
is required for linking/running the apps that use REAL(16).
The compiler package may provide a version of the third-party library
or at least a stub library that can be used for linking, but
the final program execution will still require the actual library.
This patch add support of intrinsics Fortran 2008 EXECUTE_COMMAND_LINE.
The patch contains both the lowering and the runtime code and works on
both Windows and Linux. The patch contains a list of commits, to convey
the authorship and the history of changes. Some implementation specifics
or status has been added to `flang/docs/Intrinsics.md`.
I have provided a summary of the usage and the options required for the
`EXECUTE_COMMAND_LINE intrinsic`. The intrinsic supports both a
synchronous
(by default) and an asynchronous option.
| System | Mode | Implemention |
|---------|-------|---------------------------|
| Linux | Sync | std::system() |
| Windows | Sync | std::system() |
| Linux | Async | fork() |
| Windows | Async | CreateProcess |
Support for the SYSTEM GNU extension will be added in a separate PR.
Co-authored with @jeffhammond
---------
Signed-off-by: Jeff Hammond <jeff.science@gmail.com>
Co-authored-by: Jeff Hammond <jeff.science@gmail.com>
Co-authored-by: Yi Wu <yiwu02@wdev-yiwu02.arm.com>
This patch enables more numeric (mod, sum, matmul, etc.) APIs,
and some others.
I added new macros to disable warnings about using C++ STD methods
like operators of std::complex, which do not have __device__ attribute.
This may probably result in unresolved references, if the header files
implementation relies on libstdc++. I will need to follow up on this.
This patch fixes a small bug where the new flang runtime types for
Windows (static, static_dbg, etc) are not built when the FortranRuntime
is requested by adding the missing dependency.
Currently flang's runtime libraries are only built for the specific CRT
that LLVM itself was built against. This patch adds the cmake logic for
building a separate runtime for each CRT configuration and adds a flag
for selecting a CRT configuration to link against.
This reverts commit 6403287eff71a3d6f6c862346d6ed3f0f000eb70.
This is failing on all but 1 of Linaro's flang builders.
CMake Error at /home/tcwg-buildbot/worker/clang-aarch64-full-2stage/llvm/flang-rt/unittests/CMakeLists.txt:37 (message):
Target llvm_gtest not found.
See discourse thread https://discourse.llvm.org/t/rfc-support-cmake-option-to-control-link-type-built-for-flang-runtime-libraries/71602/18 for full details.
Flang-rt is the new library target for the flang runtime libraries. It builds the Flang-rt library (which contains the sources of FortranRuntime and FortranDecimal) and the Fortran_main library. See documentation in this patch for detailed description (flang-rt/docs/GettingStarted.md).
This patch aims to:
- integrate Flang's runtime into existing llvm infrasturcture so that Flang's runtime can be built similarly to other runtimes via the runtimes target or via the llvm target as an enabled runtime
- decouple the FortranDecimal library sources that were used by both compiler and runtime so that different build configurations can be applied for compiler vs runtime
- add support for running flang-rt testsuites, which were created by migrating relevant tests from `flang/test` and `flang/unittest` to `flang-rt/test` and `flang-rt/unittest`, using a new `check-flang-rt` target.
- provide documentation on how to build and use the new FlangRT runtime
Reviewed By: DanielCChen
Differential Revision: https://reviews.llvm.org/D154869
I extended the "closure" of the device code containing the initial
transformational.cpp. The device side of the library should not be
complete at least for some APIs. For example, I tested with C OpenMP
code calling BesselJnX0 with a nullptr descriptor that failed with
a runtime error when executing on a GPU.
I added `--expt-relaxed-constexpr` for NVCC compiler to avoid multiple
warnings about missing `__attribute__((device))` on constexpr methods
coming from C++ header files.
I changed the set of files that are built for experimental CUDA/OMP
builds, i.e. the files with enabled device support are built
as such and the rest of the files are built just for the host target.
With this change we can build Flang runtime library that is fully functional
on the host target, so in-tree targets like check-flang become operational.
Reviewed By: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D155029
These are initial changes to experiment with building the Fortran runtime
as a CUDA or OpenMP target offload library.
The initial patch defines a set of macros that have to be used consistently
in Flang runtime source code so that it can be built for different
offload devices using different programming models (CUDA, HIP, OpenMP target
offload). Currently supported modes are:
* CUDA: Flang runtime may be built as a fatlib for the host and a set
of CUDA architectures specified during the build. The packaging
of the device code is done by the CUDA toolchain and may differ
from toolchan to toolchain.
* OpenMP offload:
- host_device mode: Flang runtime may be built as a fatlib for the host
and a set of OpenMP offload architectures. The packaging
of the device code is done by the OpenMP offload compiler and may differ
from compiler to compiler.
OpenMP offload 'nohost' mode is a TODO to match the build setup
of libomptarget/DeviceRTL. Flang runtime will be built as LLVM Bitcode
library using Clang/LLVM toolchain. The host part of the library
will be "empty", so there will be two distributable object: the host
Flang runtime and dummy host library with device Flang runtime pieces
packaged using clang-offload-packager and clang.
In all supported modes, enabling parts of Flang runtime for the device
compilation can be done iteratively to make the patches observable.
Note that at any point in time the resulting library may have unresolved
references to not yet enabled parts of Flang runtime.
Example cmake/make commands for building with Clang for NVPTX target:
cmake \
-DFLANG_EXPERIMENTAL_CUDA_RUNTIME=ON \
-DCMAKE_CUDA_ARCHITECTURES=80 \
-DCMAKE_C_COMPILER=/clang_nvptx/bin/clang \
-DCMAKE_CXX_COMPILER=/clang_nvptx/bin/clang++ \
-DCMAKE_CUDA_COMPILER=/clang_nvptx/bin/clang \
/llvm-project/flang/runtime/
make -j FortranRuntime
Example cmake/make commands for building with Clang OpenMP offload:
cmake \
-DFLANG_EXPERIMENTAL_OMP_OFFLOAD_BUILD="host_device" \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DFLANG_OMP_DEVICE_ARCHITECTURES="sm_80" \
../flang/runtime/
make -j FortranRuntime
Differential Revision: https://reviews.llvm.org/D151173
This reverts commit d763c6e5e2d0a6b34097aa7dabca31e9aff9b0b6.
Adds the patch by @hans from
https://github.com/llvm/llvm-project/issues/62719
This patch fixes the Windows build.
d763c6e5e2d0a6b34097aa7dabca31e9aff9b0b6 reverted the reviews
D144509 [CMake] Bumps minimum version to 3.20.0.
This partly undoes D137724.
This change has been discussed on discourse
https://discourse.llvm.org/t/rfc-upgrading-llvms-minimum-required-cmake-version/66193
Note this does not remove work-arounds for older CMake versions, that
will be done in followup patches.
D150532 [OpenMP] Compile assembly files as ASM, not C
Since CMake 3.20, CMake explicitly passes "-x c" (or equivalent)
when compiling a file which has been set as having the language
C. This behaviour change only takes place if "cmake_minimum_required"
is set to 3.20 or newer, or if the policy CMP0119 is set to new.
Attempting to compile assembly files with "-x c" fails, however
this is workarounded in many cases, as OpenMP overrides this with
"-x assembler-with-cpp", however this is only added for non-Windows
targets.
Thus, after increasing cmake_minimum_required to 3.20, this breaks
compiling the GNU assembly for Windows targets; the GNU assembly is
used for ARM and AArch64 Windows targets when building with Clang.
This patch unbreaks that.
D150688 [cmake] Set CMP0091 to fix Windows builds after the cmake_minimum_required bump
The build uses other mechanism to select the runtime.
Fixes#62719
Reviewed By: #libc, Mordante
Differential Revision: https://reviews.llvm.org/D151344
These functions will be used as part of the HLFIR lowering for
forall/where. The contents of the API were requested by @jeanPerier.
The API is designed around that use case, assuming that the caller knows
through some side channel what size to allocate for boxes returned from
the pop() function.
Differential Revision: https://reviews.llvm.org/D150050
This reverts commit 65429b9af6a2c99d340ab2dcddd41dab201f399c.
Broke several projects, see https://reviews.llvm.org/D144509#4347562 onwards.
Also reverts follow-up commit "[OpenMP] Compile assembly files as ASM, not C"
This reverts commit 4072c8aee4c89c4457f4f30d01dc9bb4dfa52559.
Also reverts fix attempt "[cmake] Set CMP0091 to fix Windows builds after the cmake_minimum_required bump"
This reverts commit 7d47dac5f828efd1d378ba44a97559114f00fb64.
Fortran runtime standalone build is broken after D140998
because of the missing CMake modules path. This is a fix.
Differential Revision: https://reviews.llvm.org/D149090