According to the Doxygen documentation,
the `relates`, `related`, `relatesalso`, and `relatedalso` commands all
have a single argument. This patch changes their classification from
`VerbatimLineCommand` to `InlineCommand` so the argument is correctly
parsed.
This implements
https://discourse.llvm.org/t/rfc-add-support-for-controlling-diagnostics-severities-at-file-level-granularity-through-command-line/81292.
Users now can suppress warnings for certain headers by providing a
mapping with globs, a sample file looks like:
```
[unused]
src:*
src:*clang/*=emit
```
This will suppress warnings from `-Wunused` group in all files that
aren't under `clang/` directory. This mapping file can be passed to
clang via `--warning-suppression-mappings=foo.txt`.
At a high level, mapping file is stored in DiagnosticOptions and then
processed with rest of the warning flags when creating a
DiagnosticsEngine. This is a functor that uses SpecialCaseLists
underneath to match against globs coming from the mappings file.
This implies processing warning options now performs IO, relevant
interfaces are updated to take in a VFS, falling back to RealFileSystem
when one is not available.
The function definition instantiation assumes any declarations used
inside are already transformed before transforming the body, so we need
to preserve the transformed expression of CXXAssumeAttr even if it is
not a constant expression. Moreover, the full expression of the
assumption should also entail a potential lambda capture transformation,
hence the call to ActOnFinishFullExpr() after TransformExpr().
Fixes#114787
This implements the RFC
https://discourse.llvm.org/t/rfc-introduce-clang-lifetime-capture-by-x/81371
In this PR, we introduce `[[clang::lifetime_capture_by(X)]]` attribute
as discussed in the RFC.
As an implementation detail of this attribute, we store and use param
indices instead of raw param expressions. The parameter indices are
computed lazily at the end of function declaration since the function
decl (and therefore the subsequent parameters) are not visible yet while
parsing a parameter annotation.
In subsequent PR, we will infer this attribute for STL containers and
perform lifetime analysis to detect dangling cases.
This paper made empty structures and unions implementation-defined. We
have always supported this as a GNU extension, so now we're documenting
our behavior and removing the extension warning in C2y mode.
This converts some undefined behaviors during initialization to instead
be constraint violations. Clang has always implemented these as
constraints, so no compiler changes were needed.
This paper made qualified function types implementation-defined. We have
always supported this as an extension, so now we're documenting our
behavior.
Note, we still warn about this by default even in C2y mode because a
qualified function type is a sign of programmer confusion.
The __builtin_counted_by_ref builtin is used on a flexible array
pointer and returns a pointer to the "counted_by" attribute's COUNT
argument, which is a field in the same non-anonymous struct as the
flexible array member. This is useful for automatically setting the
count field without needing the programmer's intervention. Otherwise
it's possible to get this anti-pattern:
ptr = alloc(<ty>, ..., COUNT);
ptr->FAM[9] = 42; /* <<< Sanitizer will complain */
ptr->count = COUNT;
To prevent this anti-pattern, the user can create an allocator that
automatically performs the assignment:
#define alloc(TY, FAM, COUNT) ({ \
TY __p = alloc(get_size(TY, COUNT)); \
if (__builtin_counted_by_ref(__p->FAM)) \
*__builtin_counted_by_ref(__p->FAM) = COUNT; \
__p; \
})
The builtin's behavior is heavily dependent upon the "counted_by"
attribute existing. It's main utility is during allocation to avoid
the above anti-pattern. If the flexible array member doesn't have that
attribute, the builtin becomes a no-op. Therefore, if the flexible
array member has a "count" field not referenced by "counted_by", it
must be set explicitly after the allocation as this builtin will
return a "nullptr" and the assignment will most likely be elided.
---------
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Co-authored-by: Aaron Ballman <aaron@aaronballman.com>
This fixes a crash when instantiating default arguments for templated
friend function declarations which lack a definition.
There are implementation limits which prevents us from finding the
pattern for such functions, and this causes difficulties
setting up the instantiation scope for the function parameters.
This patch skips instantiating the default argument in these cases,
which causes a minor regression in error recovery, but otherwise avoids
the crash.
Fixes#113324
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3344.pdf
This paper disallows a single `void` parameter from having qualifiers or
storage class specifiers. Clang has diagnosed most of these as an error
for a long time, but `register void` was previously accepted in all C
language modes and is now being rejected in all C language modes.
This paper added case ranges in switch statements, which is a GNU
extension Clang has supported since at least Clang 3.0.
It updates the diagnostics to no longer call this a GNU extension except
in C++ mode.
We made the incorrect assumption that names of fields are unique when
creating their default initializers.
We fix that by keeping track of the instantiaation pattern for field
decls that are placeholder vars,
like we already do for unamed fields.
Fixes#114069
The 'allocator' modifier is now accepted in the 'allocate' clause. Added
LIT tests covering codegen, PCH, template handling, and serialization
for 'allocator' modifier.
Added support for allocator-modifier to release notes.
Testing
- New allocate modifier LIT tests.
- OpenMP LIT tests.
- check-all
- relevant sollve_vv test cases
tests/5.2/scope/test_scope_allocate_construct.c
LLVM support for the attribute has been implemented already, so it just
plumbs it through to the CUDA front-end.
One notable difference from NVCC is that the attribute can be used
regardless of the targeted GPU. On the older GPUs it will just be
ignored. The attribute is a performance hint, and does not warrant a
hard error if compiler can't benefit from it on a particular GPU
variant.
[Related
RFC](https://discourse.llvm.org/t/rfc-support-globpattern-add-operator-to-invert-matches/80683/5?u=justinstitt)
### Summary
Implement type-based filtering via [Sanitizer Special Case
Lists](https://clang.llvm.org/docs/SanitizerSpecialCaseList.html) for
the arithmetic overflow and truncation sanitizers.
Currently, using the `type:` prefix with these sanitizers does nothing.
I've hooked up the SSCL parsing with Clang codegen so that we don't emit
the overflow/truncation checks if the arithmetic contains an ignored
type.
### Usefulness
You can craft ignorelists that ignore specific types that are expected
to overflow or wrap-around. For example, to ignore `my_type` from
`unsigned-integer-overflow` instrumentation:
```bash
$ cat ignorelist.txt
[unsigned-integer-overflow]
type:my_type=no_sanitize
$ cat foo.c
typedef unsigned long my_type;
void foo() {
my_type a = ULONG_MAX;
++a;
}
$ clang foo.c -fsanitize=unsigned-integer-overflow -fsanitize-ignorelist=ignorelist.txt ; ./a.out
// --> no sanitizer error
```
If a type is functionally intended to overflow, like
[refcount_t](https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t)
and its associated APIs in the Linux kernel, then this type filtering
would prove useful for reducing sanitizer noise. Currently, the Linux
kernel dealt with this by
[littering](https://elixir.bootlin.com/linux/v6.10.8/source/include/linux/refcount.h#L139
) `__attribute__((no_sanitize("signed-integer-overflow")))` annotations
on all the `refcount_t` APIs. I think this serves as an example of how a
codebase could be made cleaner. We could make custom types that are
filtered out in an ignorelist, allowing for types to be more expressive
-- without the need for annotations. This accomplishes a similar goal to
https://github.com/llvm/llvm-project/pull/86618.
Yet another use case for this type filtering is whitelisting. We could
ignore _all_ types, save a few.
```bash
$ cat ignorelist.txt
[implicit-signed-integer-truncation]
type:*=no_sanitize # ignore literally all types
type:short=sanitize # except `short`
$ cat bar.c
// compile with -fsanitize=implicit-signed-integer-truncation
void bar(int toobig) {
char a = toobig; // not instrumented
short b = toobig; // instrumented
}
```
### Other ways to accomplish the goal of sanitizer
allowlisting/whitelisting
* ignore list SSCL type support (this PR that you're reading)
* [my sanitize-allowlist
branch](https://github.com/llvm/llvm-project/compare/main...JustinStitt:llvm-project:sanitize-allowlist)
- this just implements a sibling flag `-fsanitize-allowlist=`, removing
some of the double negative logic present with `skip`/`ignore` when
trying to whitelist something.
* [Glob
Negation](https://discourse.llvm.org/t/rfc-support-globpattern-add-operator-to-invert-matches/80683)
- Implement a negation operator to the GlobPattern class so the
ignorelist query can use them to simulate allowlisting
Please let me know which of the three options we like best. They are not
necessarily mutually exclusive.
Here's [another related
PR](https://github.com/llvm/llvm-project/pull/86618) which implements a
`wraps` attribute. This can accomplish a similar goal to this PR but
requires in-source changes to codebases and also covers a wider variety
of integer definedness problems.
### CCs
@kees @vitalybuka @bwendling
---------
Signed-off-by: Justin Stitt <justinstitt@google.com>
This PR resolves a crash triggered by a forward reference to an enum
type in a function parameter list. The fix includes setting `Invalid`
when `TagUseKind` is `Declaration` to ensure correct error handling.
Fixes#112208
Swift ClangImporter now supports concurrency annotations on imported
declarations and their parameters/results, to make it possible to use
imported APIs in Swift safely there has to be a way to annotate
individual parameters and result types with relevant attributes that
indicate that e.g. a block is called on a particular actor or it accepts
a `Sendable` parameter.
To faciliate that `SwiftAttr` is switched from `InheritableAttr` which
is a declaration attribute to `DeclOrTypeAttr`. To support this
attribute in type context we need access to its "Attribute" argument
which requires `AttributedType` to be extended to include `Attr *` when
available instead of just `attr::Kind` otherwise it won't be possible to
determine what attribute should be imported.
Fix `isInstantiated` and `isInTemplateInstantiation` matchers, so they
return true for instantiations of variable templates, and any
declaration in statements contained in such instantiations.
Consider the following:
```
template<typename T>
struct A {
template<typename U>
struct B {
static constexpr int x = 0; // #1
};
template<typename U>
struct B<U*> {
static constexpr int x = 1; // #2
};
};
template<>
template<typename U>
struct A<long>::B {
static constexpr int x = 2; // #3
};
static_assert(A<short>::B<int>::y == 0); // uses #1
static_assert(A<short>::B<int*>::y == 1); // uses #2
static_assert(A<long>::B<int>::y == 2); // uses #3
static_assert(A<long>::B<int*>::y == 2); // uses #3
```
According to [temp.spec.partial.member] p2:
> If the primary member template is explicitly specialized for a given
(implicit) specialization of the enclosing class template, the partial
specializations of the member template are ignored for this
specialization of the enclosing class template.
If a partial specialization of the member template is explicitly
specialized for a given (implicit) specialization of the enclosing class
template, the primary member template and its other partial
specializations are still considered for this specialization of the
enclosing class template.
The example above fails to compile because we currently don't implement
[temp.spec.partial.member] p2. This patch implements the wording, fixing #51051.
Mark the whole StmtExpr invalid when the last statement in compound
statement is invalid.
Because the last statement need to do copy initialization, it causes
subsequent errors to simply ignore last invalid statement.
Fixed: #113468
Fixes#111854
---
The issue arises when `GetExprRange` encounters a `ConditionalOperator`
with a `CXXThrowExpr`
```md
ConditionalOperator 0x1108658e0 'int'
|-CXXBoolLiteralExpr 0x110865878 '_Bool' true
|-CXXThrowExpr 0x1108658a8 'void'
| `-IntegerLiteral 0x110865888 'int' 0
`-IntegerLiteral 0x1108658c0 'int' 0
```
ed3d051782/clang/lib/Sema/SemaChecking.cpp (L9628-L9631)
The current behavior causes the `GetExprRange` to proceed with the throw
expression (`CO->getTrueExpr()`/`void` type)
This implements a warning that's similar to what GCC does in that
context: both memcpy and memset require their first and second operand
to be trivially copyable, let's warn if that's not the case.
This change moves the `alpha.nondeterministic.PointerSorting` and
`alpha.nondeterministic.PointerIteration` static analyzer checkers to a
single `clang-tidy` check. Those checkers were implemented as simple
`clang-tidy` check-like code, wrapped in the static analyzer framework.
The documentation was updated to describe what the checks can and cannot
do, and testing was completed on a broad set of open-source projects.
Co-authored-by: Vince Bridgers <vince.a.bridgers@ericsson.com>