musttail is not often possible to be generated on PPC targets as when
calling to a function defined in another module, PPC needs to restore
the TOC pointer. To restore the TOC pointer, compiler needs to emit a
nop after the call to let linker generate codes to restore TOC pointer.
Tail call cannot generate expected call sequence for this case.
To avoid the crash inside the compiler backend, a diagnosis is added in
the frontend.
Fixes#63214
'a' is an input/output constraint for restraining assembly variables
to an indexed or indirect address operand. It previously was marked
as supported but would throw an assertion for unknown constraint type
in the back-end when this test case was compiled. This change marks it
as unsupported until we can add full support for address operands
constraining to the compiler code generation.
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
24 under clang/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".
Under some circumstance (library loaded with the main program), TLS
initial-exec model can be applied to local-dynamic access(es). We
could use some simple heuristic to decide the update at function level:
* If there is equal or less than a number of TLS local-dynamic access(es)
in the function, use TLS initial-exec model. (the threshold which default to
1 is controlled by hidden option)
The PR implements a subset of features of function
__builtin_cpu_support() for AIX OS based on the information which AIX
kernel runtime variable `_system_configuration` and function call `getsystemcfg()` of
/usr/include/sys/systemcfg.h in AIX OS can provide.
Following subset of features are supported in the PR
"arch_3_00", "arch_3_1","booke","cellbe","darn","dfp","dscr" ,"ebb","efpsingle","efpdouble","fpu","htm","isel",
"mma","mmu","pa6t","power4","power5","power5+","power6x","ppc32","ppc601","ppc64","ppcle","smt",
"spe","tar","true_le","ucache","vsx"
These macros are used by STL implementations to support implementation
of std::hardware_destructive_interference_size and
std::hardware_constructive_interference_size
Fixes#60174
---------
Co-authored-by: Louis Dionne <ldionne.2@gmail.com>
This patch adds the clang portion of an AIX-specific option to inform
the
compiler that it can use a faster access sequence for the local-dynamic
TLS model (formally named aix-small-local-dynamic-tls).
This patch mainly references Amy's work on small local-exec TLS support.
Make __builtin_cpu_{init|supports|is} target independent and provide an
opt-in query for targets that want to support it. Each target is still
responsible for their specific lowering/code-gen. Also provide code-gen
for PowerPC.
I originally proposed this in https://reviews.llvm.org/D152914 and this
addresses the comments I received there.
---------
Co-authored-by: Nemanja Ivanovic <nemanjaivanovic@nemanjas-air.kpn>
Co-authored-by: Nemanja Ivanovic <nemanja@synopsys.com>
This patch adds the clang portion of an AIX-specific option to inform
the compiler that it can use a faster access sequence for the local-exec
TLS model (formally named aix-small-local-exec-tls).
This patch only adds the frontend portion of the option, building upon:
Backend portion of the option (D156203)
Backend patch that utilizes this option to actually produce the faster access sequence (D155600)
Differential Revision: https://reviews.llvm.org/D155544
Change the return type of `getClobbers` function from `const char*`
to `std::string_view`. Update the function usages in CodeGen module.
The reasoning of these changes is to remove unsafe `const char*`
strings and prevent unnecessary allocations for constructing the
`std::string` in usages of `getClobbers()` function.
Differential Revision: https://reviews.llvm.org/D148799
The alignment of function pointers was added to the Datalayout by
D57335 but currently is unset for the Power target. This will cause us
to compute a conservative minimum alignment of one if places like
Value::getPointerAlignment.
This patch implements the function pointer alignment in the Datalayout
for the Power backend and Power targets in clang, so we can query the
value for a particular Power target.
We come up with the correct value one of two ways:
- If the target uses function descriptor objects (i.e. ELFv1 & AIX ABIs),
then a function pointer points to the descriptor, so use the alignment
we would emit the descriptor with.
- If the target doesn't use function descriptor objects (i.e. ELFv2), a
function pointer points to the global entry point, so use the minimum
alignment for code on Power (i.e. 4-bytes).
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D147016
POWER Darwin support in the backend has been removed for some time: https://discourse.llvm.org/t/rfc-remove-darwin-support-from-power-backends
but Clang still has the TargetInfo and other remnants lying around.
This patch does some cleanup and removes those and other related frontend support still remaining. We adjust any tests using the triple to either remove
the test if unneeded or switch to another Power triple.
Reviewed By: MaskRay, nemanjai
Differential Revision: https://reviews.llvm.org/D146459
Add a member function isPPC64ELFv2ABI() to determine what ABI is used on the
64-bit PowerPC big endian operating environment.
Reviewed By: nemanjai, dim, pkubaj
Differential Revision: https://reviews.llvm.org/D144321
Currently default simd alignment is defined by Clang specific TargetInfo class.
This class cannot be reused for LLVM Flang. That's why default simd alignment
calculation has been moved to OMPIRBuilder which is common for Flang and Clang.
Previous attempt: https://reviews.llvm.org/D138496 was wrong because
the default alignment depended on the number of built LLVM targets.
If we wanted to calculate the default alignment for PPC and we hadn't specified
PPC LLVM target to build, then we would get 0 as the alignment because
OMPIRBuilder couldn't create PPCTargetMachine object and it returned 0 as
the default value.
If PPC LLVM target had been built earlier, then OMPIRBuilder could have created
PPCTargetMachine object and it would have returned 128.
Differential Revision: https://reviews.llvm.org/D141910
Reviewed By: jdoerfert
Currently default simd alignment is defined by Clang specific TargetInfo class.
This class cannot be reused for LLVM Flang. That's why default simd alignment
calculation has been moved to OMPIRBuilder which is common for Flang and Clang.
Previous attempt: https://reviews.llvm.org/D138496 was wrong because
the default alignment depended on the number of built LLVM targets.
If we wanted to calculate the default alignment for PPC and we hadn't specified
PPC LLVM target to build, then we would get 0 as the alignment because
OMPIRBuilder couldn't create PPCTargetMachine object and it returned 0 as
the default value.
If PPC LLVM target had been built earlier, then OMPIRBuilder could have created
PPCTargetMachine object and it would have returned 128.
Differential Revision: https://reviews.llvm.org/D141910
Reviewed By: jdoerfert
Currently default simd alignment is specified by Clang specific TargetInfo
class. This class cannot be reused for LLVM Flang. If we move the default
alignment field into TargetMachine class then we can create TargetMachine
objects and query them to find SIMD alignment.
Scope of changes:
1) Added information about maximal allowed SIMD alignment to TargetMachine
classes.
2) Removed getSimdDefaultAlign function from Clang TargetInfo class.
3) Refactored createTargetMachine function.
Reviewed By: jsjodin
Differential Revision: https://reviews.llvm.org/D138496
This avoids recomputing string length that is already known at compile time.
It has a slight impact on preprocessing / compile time, see
https://llvm-compile-time-tracker.com/compare.php?from=3f36d2d579d8b0e8824d9dd99bfa79f456858f88&to=e49640c507ddc6615b5e503144301c8e41f8f434&stat=instructions:u
This a recommit of e953ae5bbc313fd0cc980ce021d487e5b5199ea4 and the subsequent fixes caa713559bd38f337d7d35de35686775e8fb5175 and 06b90e2e9c991e211fecc97948e533320a825470.
The above patchset caused some version of GCC to take eons to compile clang/lib/Basic/Targets/AArch64.cpp, as spotted in aa171833ab0017d9732e82b8682c9848ab25ff9e.
The fix is to make BuiltinInfo tables a compilation unit static variable, instead of a private static variable.
Differential Revision: https://reviews.llvm.org/D139881
This patch turns on support for CR bit accesses for Power8 and above. The reason
why CR bits are turned on as the default for Power8 and above is that because
later architectures make use of builtins and instructions that require CR bit
accesses (such as the use of setbc in the vector string isolate predicate
and bcd builtins on Power10).
This patch also adds the clang portion to allow for turning on CR bits in the
front end if the user so desires to.
Differential Revision: https://reviews.llvm.org/D124060
Make 16-byte atomic type aligned to 16-byte on PPC64, thus consistent with GCC. Also enable inlining 16-byte atomics on non-AIX targets on PPC64.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D122377
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
This patch makes sure that the builtins __builtin_ppc_load8r and
__ builtin_ppc_store8r are only available for Power 7 and up.
Currently the builtins seem to produce incorrect code if used for
Power 6 or before.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D110653
Currently, we have no front-end type for ppc_fp128 type in IR. PowerPC
target generates ppc_fp128 type from long double now, but there's option
(-mabi=(ieee|ibm)longdouble) to control it and we're going to do
transition from IBM extended double-double ppc_fp128 to IEEE fp128 in
the future.
This patch adds type __ibm128 which always represents ppc_fp128 in IR,
as what GCC did for that type. Without this type in Clang, compilation
will fail if compiling against future version of libstdcxx (which uses
__ibm128 in headers).
Although all operations in backend for __ibm128 is done by software,
only PowerPC enables support for it.
There's something not implemented in this commit, which can be done in
future ones:
- Literal suffix for __ibm128 type. w/W is suitable as GCC documented.
- __attribute__((mode(IF))) should be for __ibm128.
- Complex __ibm128 type.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D93377
[NFC] This patch adds features for pwr7, pwr8, and pwr9 that can be
used for semachecking builtin functions that are only valid for certain
versions of ppc.
Reviewed By: nemanjai, #powerpc
Authored By: Quinn Pham <Quinn.Pham@ibm.com>
Differential revision: https://reviews.llvm.org/D105501
[NFC] This patch adds features for pwr7, pwr8, and pwr9 that can be
used for semachecking builtin functions that are only valid for certain
versions of ppc.
Reviewed By: nemanjai, #powerpc
Authored By: Quinn Pham <Quinn.Pham@ibm.com>
Differential revision: https://reviews.llvm.org/D105501
This change is intended as initial setup. The plan is to add
more semantic checks later. I plan to update the documentation
as more semantic checks are added (instead of documenting the
details up front). Most of the code closely mirrors that for
the Swift calling convention. Three places are marked as
[FIXME: swiftasynccc]; those will be addressed once the
corresponding convention is introduced in LLVM.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D95561
Moving the definition of the defineXLCompatMacros function from
the header file clang/lib/Basic/Targets/PPC.h to the source file
clang/lib/Basic/Targets/PPC.cpp.
Differential revision: https://reviews.llvm.org/D104125
This is the first in a series of patches to provide builtins for
compatibility with the XL compiler. Most of the builtins already had
intrinsics and only needed to be implemented in the front end.
Intrinsics were created for the three iospace builtins, eieio, and icbt.
Pseudo instructions were created for eieio and iospace_eieio to
ensure that nops were inserted before the eieio instruction.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D102443
Add user-facing front end option to turn off power10 prefixed instructions.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D102191
Reverts parts of https://reviews.llvm.org/D17183, but keeps the
resetDataLayout() API and adds an assert that checks that datalayout string and
user label prefix are in sync.
Approach 1 in https://reviews.llvm.org/D17183#2653279
Reduces number of TUs build for 'clang-format' from 689 to 575.
I also implemented approach 2 in D100764. If someone feels motivated
to make us use DataLayout more, it's easy to revert this change here
and go with D100764 instead. I don't plan on doing more work in this
area though, so I prefer going with the smaller, more self-consistent change.
Differential Revision: https://reviews.llvm.org/D100776
Add an option to tell the compiler that it can use privileged instructions.
This patch only adds the option. Backend implementation will be added in a
future patch.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D99193
In order to have the same option on power PC LLVM and power PC gcc
the option will be changed from -mrop-protection to -mrop-protect.
The feature will be off by default and turned on when the option is used.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D99185
This changes the target data layout to make stack align to 16 bytes
on Power10. Before this change, stack was being aligned to 32 bytes.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D96265
Added -mrop-protection for Power PC to turn on codegen that provides some
protection from ROP attacks.
The option is off by default and can be turned on for Power 8, Power 9 and
Power 10.
This patch is for the option only. The feature will be implemented by a later
patch.
Reviewed By: amyk
Differential Revision: https://reviews.llvm.org/D96512
Add powerpcle support to clang.
For FreeBSD, assume a freestanding environment for now, as we only need it in the first place to build loader, which runs in the OpenFirmware environment instead of the FreeBSD environment.
For Linux, recognize glibc and musl environments to match current usage in Void Linux PPC.
Adjust driver to match current binutils behavior regarding machine naming.
Adjust and expand tests.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93919