Added a class to hold such common state. The goal is to both reduce the argument list of other utilities used by `computeImportForModule` (which will be brought as members in a subsequent patch), and to make it easy to extend such state later.
Also removed them from the header. They are there for test-only. This
simplifies further refactoring (as well as code comprehension)
Differential Revision: https://reviews.llvm.org/D159308
The import/export maps, and the ModuleToDefinedGVSummaries map, are all
indexed by module paths, which are StringRef obtained from the module
summary index, which already has a data structure than owns these
strings (the ModulePathStringTable). Because these other maps are also
StringMap, which makes a copy of the string key, we were keeping
multiple extra copies of the module paths, leading to memory overhead.
Change these to DenseMap keyed by StringRef, and document that the
strings are owned by the index.
The only exception is the llvm-link tool which synthesizes an import list
from command line options, and I have added a string cache to maintain
ownership there.
I measured around 5% memory reduction in the thin link of a large
binary.
Differential Revision: https://reviews.llvm.org/D156580
Since the symbols in the ThinLTO summary are indexed by GUID we can end
up in corner cases where a callee edge in the combined index goes to a
summary for a global variable. This could happen in the case of hash
collisions, and in the case of SamplePGO profiles could potentially happen
due to code changes (since we synthesize call edges to GUIDs that were
inlined callees in the profiled code).
Handle this by simply ignoring any non-FunctionSummary callees.
Differential Revision: https://reviews.llvm.org/D152406
After importing variables, we do some checking to ensure that variables
marked read or write only, which have been marked exported (e.g.
because a referencing function has been exported), are on at least one
module's imports list. This is because the read or write only variables
will be internalized, so we need a copy any any module that references
it.
This checking is overly conservative in the case of linkonce_odr or
other linkage types where there can already be a duplicate copy in
existence in the importing module, which therefore wouldn't need to
import it. Loosen up the checking for these linkage types.
Fixes https://github.com/llvm/llvm-project/issues/62468.
Differential Revision: https://reviews.llvm.org/D149630
This makes the logic for referenced globals reusable for import criteria
that don't use thresholds - in fact, we currently didn't consider any
thresholds when importing.
Differential Revision: https://reviews.llvm.org/D149298
This makes it easier to reuse the legality part for other import
policies that wouldn't use thresholds.
Importing un-inlinable functions is also legal, because they could be
further specialized in a context-specific way, without inlining.
Differential Revision: https://reviews.llvm.org/D148838
This logic was added in https://reviews.llvm.org/D95943 specifically to
handle an issue for non-prevailing global variables. It turns out that
it adds a new issue for prevailing glboal variables, since those could
be replaced by an available_externally definition and hence incorrectly
omitted from the output object file. Limit the import to non-prevailing
global variables to fix this, as suggested by @tejohnson.
The bulk of the diff is mechanical changes to thread isPrevailing
through to where it's needed and ensure it's available before the
relevant calls; the actual logic change itself is straightforward.
Fixes https://github.com/llvm/llvm-project/issues/61677
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D146876
Conflicting module flags leads to a proper error for regular LTO but a crash
(report_fatal_error) for ThinLTO. Switch to createStringError to fix the crash
and match regular LTO.
For a local linkage GlobalObject in a non-prevailing COMDAT, it remains defined while its
leader has been made available_externally. This violates the COMDAT rule that
its members must be retained or discarded as a unit.
To fix this, update the regular LTO change D34803 to track local linkage
GlobalValues, and port the code to ThinLTO (GlobalAliases are not handled.)
This fixes two problems.
(a) `__cxx_global_var_init` in a non-prevailing COMDAT group used to
linger around (unreferenced, hence benign), and is now correctly discarded.
```
int foo();
inline int v = foo();
```
(b) Fix https://github.com/llvm/llvm-project/issues/58215:
as a size optimization, we place private `__profd_` in a COMDAT with a
`__profc_` key. When FuncImport.cpp makes `__profc_` available_externally due to
a non-prevailing COMDAT, `__profd_` incorrectly remains private. This change
makes the `__profd_` available_externally.
```
cat > c.h <<'eof'
extern void bar();
inline __attribute__((noinline)) void foo() {}
eof
cat > m1.cc <<'eof'
#include "c.h"
int main() {
bar();
foo();
}
eof
cat > m2.cc <<'eof'
#include "c.h"
__attribute__((noinline)) void bar() {
foo();
}
eof
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto=thin -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
```
If a GlobalAlias references a GlobalValue which is just changed to
available_externally, change the GlobalAlias as well (e.g. C5/D5 comdats due to
cc1 -mconstructor-aliases). The GlobalAlias may be referenced by other
available_externally functions, so it cannot easily be removed.
Depends on D137441: we use available_externally to mark a GlobalAlias in a
non-prevailing COMDAT, similar to how we handle GlobalVariable/Function.
GlobalAlias may refer to a ConstantExpr, not changing GlobalAlias to
GlobalVariable gives flexibility for future extensions (the use case is niche.
For simplicity we don't handle it yet). In addition, available_externally
GlobalAlias is the most straightforward implementation and retains the aliasee
information to help optimizers.
See windows-vftable.ll: Windows vftable uses an alias pointing to a
private constant where the alias is the COMDAT leader. The COMDAT use case
is skeptical and ThinLTO does not discard the alias in the non-prevailing COMDAT.
This patch retains the behavior.
See new tests ctor-dtor-alias2.ll: depending on whether the complete object
destructor emitted, when ctor/dtor aliases are used, we may see D0/D2 COMDATs in
one TU and D0/D1/D2 in a D5 COMDAT in another TU.
Allow such a mix-and-match with `if (GO->getComdat()->getName() == GO->getName()) NonPrevailingComdats.insert(GO->getComdat());`
GlobalAlias handling in ThinLTO is still weird, but this patch should hopefully
improve the situation for at least all cases I can think of.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D135427
For a local linkage GlobalObject in a non-prevailing COMDAT, it remains defined while its
leader has been made available_externally. This violates the COMDAT rule that
its members must be retained or discarded as a unit.
To fix this, update the regular LTO change D34803 to track local linkage
GlobalValues, and port the code to ThinLTO (GlobalAliases are not handled.)
This fixes two problems.
(a) `__cxx_global_var_init` in a non-prevailing COMDAT group used to
linger around (unreferenced, hence benign), and is now correctly discarded.
```
int foo();
inline int v = foo();
```
(b) Fix https://github.com/llvm/llvm-project/issues/58215:
as a size optimization, we place private `__profd_` in a COMDAT with a
`__profc_` key. When FuncImport.cpp makes `__profc_` available_externally due to
a non-prevailing COMDAT, `__profd_` incorrectly remains private. This change
makes the `__profd_` available_externally.
```
cat > c.h <<'eof'
extern void bar();
inline __attribute__((noinline)) void foo() {}
eof
cat > m1.cc <<'eof'
#include "c.h"
int main() {
bar();
foo();
}
eof
cat > m2.cc <<'eof'
#include "c.h"
__attribute__((noinline)) void bar() {
foo();
}
eof
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto=thin -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
```
If a GlobalAlias references a GlobalValue which is just changed to
available_externally, change the GlobalAlias as well (e.g. C5/D5 comdats due to
cc1 -mconstructor-aliases). The GlobalAlias may be referenced by other
available_externally functions, so it cannot easily be removed.
Depends on D137441: we use available_externally to mark a GlobalAlias in a
non-prevailing COMDAT, similar to how we handle GlobalVariable/Function.
GlobalAlias may refer to a ConstantExpr, not changing GlobalAlias to
GlobalVariable gives flexibility for future extensions (the use case is niche.
For simplicity we don't handle it yet). In addition, available_externally
GlobalAlias is the most straightforward implementation and retains the aliasee
information to help optimizers.
See windows-vftable.ll: Windows vftable uses an alias pointing to a
private constant where the alias is the COMDAT leader. The COMDAT use case
is skeptical and ThinLTO does not discard the alias in the non-prevailing COMDAT.
This patch retains the behavior.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D135427
This reverts commit 89ddcff1d2d6e9f4de78f3a563a8b1987bf7ea8f.
Reason: This breaks bootstrapping builds of LLVM on Windows using
ThinLTO; see https://crbug.com/1382839
For a local linkage GlobalObject in a non-prevailing COMDAT, it remains defined while its
leader has been made available_externally. This violates the COMDAT rule that
its members must be retained or discarded as a unit.
To fix this, update the regular LTO change D34803 to track local linkage
GlobalValues, and port the code to ThinLTO (GlobalAliases are not handled.)
This fixes two problems.
(a) `__cxx_global_var_init` in a non-prevailing COMDAT group used to
linger around (unreferenced, hence benign), and is now correctly discarded.
```
int foo();
inline int v = foo();
```
(b) Fix https://github.com/llvm/llvm-project/issues/58215:
as a size optimization, we place private `__profd_` in a COMDAT with a
`__profc_` key. When FuncImport.cpp makes `__profc_` available_externally due to
a non-prevailing COMDAT, `__profd_` incorrectly remains private. This change
makes the `__profd_` available_externally.
```
cat > c.h <<'eof'
extern void bar();
inline __attribute__((noinline)) void foo() {}
eof
cat > m1.cc <<'eof'
#include "c.h"
int main() {
bar();
foo();
}
eof
cat > m2.cc <<'eof'
#include "c.h"
__attribute__((noinline)) void bar() {
foo();
}
eof
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto=thin -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
```
If a GlobalAlias references a GlobalValue which is just changed to
available_externally, change the GlobalAlias as well (e.g. C5/D5 comdats due to
cc1 -mconstructor-aliases). The GlobalAlias may be referenced by other
available_externally functions, so it cannot easily be removed.
Depends on D137441: we use available_externally to mark a GlobalAlias in a
non-prevailing COMDAT, similar to how we handle GlobalVariable/Function.
GlobalAlias may refer to a ConstantExpr, not changing GlobalAlias to
GlobalVariable gives flexibility for future extensions (the use case is niche.
For simplicity we don't handle it yet). In addition, available_externally
GlobalAlias is the most straightforward implementation and retains the aliasee
information to help optimizers.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D135427
This reverts commit 8ef3fd8d59ba0100bc6e83350ab1e978536aa531.
I mentioned that GlobalAlias was not handled. It turns out GlobalAlias has to be handled in the same patch (as opposed to in a follow-up),
as otherwise clang codegen of C5/D5 constructor/destructor would regress (https://reviews.llvm.org/D135427#3869003).
For a local linkage GlobalObject in a non-prevailing COMDAT, it remains defined while its
leader has been made available_externally. This violates the COMDAT rule that
its members must be retained or discarded as a unit.
To fix this, update the regular LTO change D34803 to track local linkage
GlobalValues, and port the code to ThinLTO (GlobalAliases are not handled.)
This fixes two problems.
(a) `__cxx_global_var_init` in a non-prevailing COMDAT group used to
linger around (unreferenced, hence benign), and is now correctly discarded.
```
int foo();
inline int v = foo();
```
(b) Fix https://github.com/llvm/llvm-project/issues/58215:
as a size optimization, we place private `__profd_` in a COMDAT with a
`__profc_` key. When FuncImport.cpp makes `__profc_` available_externally due to
a non-prevailing COMDAT, `__profd_` incorrectly remains private. This change
makes the `__profd_` available_externally.
```
cat > c.h <<'eof'
extern void bar();
inline __attribute__((noinline)) void foo() {}
eof
cat > m1.cc <<'eof'
int main() {
bar();
foo();
}
eof
cat > m2.cc <<'eof'
__attribute__((noinline)) void bar() {
foo();
}
eof
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto=thin -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
```
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D135427
This reverts commit 4fbe33593c8132fdc48647c06f4d1455bfff1c88. It causes linking errors, with details provided internally. (Hopefully the author/reviewers will be able to upstream the internal repro).
See the updated linkonce_resolution_comdat.ll. For a local linkage GV in a
non-prevailing COMDAT, it remains defined while its leader has been made
available_externally. This violates the COMDAT rule that its members must be
retained or discarded as a unit.
To fix this, update the regular LTO change D34803 to track local linkage
GlobalValues, and port the code to ThinLTO (GlobalAliases are not handled.)
Fix https://github.com/llvm/llvm-project/issues/58215:
as a size optimization, we place private `__profd_` in a COMDAT with a
`__profc_` key. When FuncImport.cpp makes `__profc_` available_externally due to
a non-prevailing COMDAT, `__profd_` incorrectly remains private. This change
makes the `__profd_` available_externally.
```
cat > c.h <<'eof'
extern void bar();
inline __attribute__((noinline)) void foo() {}
eof
cat > m1.cc <<'eof'
#include "c.h"
int main() {
bar();
foo();
}
eof
cat > m2.cc <<'eof'
#include "c.h"
__attribute__((noinline)) void bar() {
foo();
}
eof
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
# one _Z3foov
clang -O2 -fprofile-generate=./t m1.cc m2.cc -flto=thin -fuse-ld=lld -o t_gen
rm -fr t && ./t_gen && llvm-profdata show -function=foo t/default_*.profraw
# one _Z3foov
```
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D135427
2 of the 3 callsite of IRMover::move() pass empty lambda functions. Just
make this parameter llvm::unique_function.
Came about via discussion in D120781. Probably worth making this change
regardless of the resolution of D120781.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D121630
Per discussion on
https://reviews.llvm.org/D59709#inline-1148734, this seems like the
right course of action. `canBeOmittedFromSymbolTable()` subsumes and
generalizes the previous logic. In addition to handling `linkonce_odr`
`unnamed_addr` globals, we now also internalize `linkonce_odr` +
`local_unnamed_addr` constants.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D120173
To better reflect the meaning of the now-disambiguated {GlobalValue,
GlobalAlias}::getBaseObject after breaking off GlobalIFunc::getResolverFunction
(D109792), the function is renamed to getAliaseeObject.
As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of report_fatal_error(const std::string&) with the Twine() variant which can be forward declared.
Thinlink provides an opportunity to propagate function attributes across modules, enabling additional propagation opportunities.
This change propagates (currently default off, turn on with `disable-thinlto-funcattrs=1`) noRecurse and noUnwind based off of function summaries of the prevailing functions in bottom-up call-graph order. Testing on clang self-build:
1. There's a 35-40% increase in noUnwind functions due to the additional propagation opportunities.
2. Throughput is measured at 10-15% increase in thinlink time which itself is 1.5% of E2E link time.
Implementation-wise this adds the following summary function attributes:
1. noUnwind: function is noUnwind
2. mayThrow: function contains a non-call instruction that `Instruction::mayThrow` returns true on (e.g. windows SEH instructions)
3. hasUnknownCall: function contains calls that don't make it into the summary call-graph thus should not be propagated from (e.g. indirect for now, could add no-opt functions as well)
Testing:
Clang self-build passes and 2nd stage build passes check-all
ninja check-all with newly added tests passing
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D36850
In ThinLTO for locals we normally compute the GUID from the name after
prepending the source path to get a unique global id. SamplePGO indirect
call profiles contain the target GUID without this uniquification,
however (unless compiling with -funique-internal-linkage-names).
In order to correctly handle the call edges added to the combined index
for these indirect calls, during importing and bitcode writing we
consult a map of original to full GUID to identify the actual callee.
However, for a large application this was consuming a lot of compile
time as we need to do this repeatedly (especially during importing where
we may traverse call edges multiple times).
To fix this implement a suggestion in one of the FIXME comments, and
actually modify the call edges during a single traversal after the index
is built to perform the fixups once. I combined this fixup with the dead
code analysis performed on the index in order to avoid adding an
additional walk of the index. The dead code analysis is the first
analysis performed on the index.
This reduced the time required for a large thin link with SamplePGO by
about 20%.
No new test added, but I confirmed that there are existing tests that
will fail when no fixup is performed.
Differential Revision: https://reviews.llvm.org/D110374
Add options -[no-]offload-lto and -foffload-lto=[thin,full] for controlling
LTO for offload compilation. Allow LTO for AMDGPU target.
AMDGPU target does not support codegen of object files containing
call of external functions, therefore the LLVM module passed to
AMDGPU backend needs to contain definitions of all the callees.
An LLVM option is added to allow function importer to import
functions with noinline attribute.
HIP toolchain passes proper LLVM options to lld to make sure
function importer imports definitions of all the callees.
Reviewed by: Teresa Johnson, Artem Belevich
Differential Revision: https://reviews.llvm.org/D99683
Currently, if there is a module that contains a strong definition of
a global variable and a module that has both a weak definition for
the same global and a reference to it, it may result in an undefined symbol error
while linking with ThinLTO.
It happens because:
* the strong definition become internal because it is read-only and can be imported;
* the weak definition gets replaced by a declaration because it's non-prevailing;
* the strong definition failed to be imported because the destination module
already contains another definition of the global yet this def is non-prevailing.
The patch adds a check to computeImportForReferencedGlobals() that allows
considering a global variable for being imported even if the module contains
a definition of it in the case this def has an interposable linkage type.
Note that currently the check is based only on the linkage type
(and this seems to be enough at the moment), but it might be worth to account
the information whether the def is prevailing or not.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95943
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
The default value is dependent on `-DLLVM_ENABLE_ASSERTIONS={off,on}` (D22167), which is
error-prone. The few tests checking `!thinlto_src_module` can specify -enable-import-metadata explicitly.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D93959
I found that propagateAttributes was ~23% of a thin link's run time
(almost 4x higher than the second hottest function). The main reason is
that it re-examines a global var each time it is referenced. This
becomes unnecessary once it is marked both non read only and non write
only. I added a set to avoid doing redundant work, which dropped the
runtime of that thin link by almost 15%.
I made a smaller efficiency improvement (no measurable impact) to skip
all summaries for a VI if the first copy is dead. I added an assert to
ensure that all copies are dead if any is. The code in
computeDeadSymbols marks all summaries for a VI as live. There is one
corner case where it was skipping marking an alias as live, that I
fixed. However, since the code earlier marked all copies of a preserved
GUID's VI as live, and each 'visit' marks all copies live, the only case
where this could make a difference is summaries that were marked live
when they were built initially, and that is only a few special compiler
generated symbols and inline assembly symbols, so it likely is never
provoked in practice.
Differential Revision: https://reviews.llvm.org/D84985
Summary:
The working set size heuristics (ProfileSummaryInfo::hasHugeWorkingSetSize)
under the partial sample PGO may not be accurate because the profile is partial
and the number of hot profile counters in the ProfileSummary may not reflect the
actual working set size of the program being compiled.
To improve this, the (approximated) ratio of the the number of profile counters
of the program being compiled to the number of profile counters in the partial
sample profile is computed (which is called the partial profile ratio) and the
working set size of the profile is scaled by this ratio to reflect the working
set size of the program being compiled and used for the working set size
heuristics.
The partial profile ratio is approximated based on the number of the basic
blocks in the program and the NumCounts field in the ProfileSummary and computed
through the thin LTO indexing. This means that there is the limitation that the
scaled working set size is available to the thin LTO post link passes only.
Reviewers: davidxl
Subscribers: mgorny, eraman, hiraditya, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79831
Summary:
Missing error mangling is noticed in
https://bugs.llvm.org/show_bug.cgi?id=45636
where inconsistent profiling input caused
llvm/lld to crash as:
```
Program aborted due to an unhandled Error:
linking module flags 'ProfileSummary':
IDs have conflicting values in 'Mutex_posix.o' and 'nsBrowserApp.o'
```
The change does not change the fact that LLVM crashes
but changes error output to say what was incorrect:
```
LLVM ERROR: Function Import: link error:
linking module flags 'ProfileSummary':
IDs have conflicting values in 'Mutex_posix.o' and 'nsBrowserApp.o'
```
Actual crash has yet to be fixed.
Reviewers: lattner
Reviewed By: lattner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78676
dso_local leads to direct access even if the definition is not within this compilation unit (it is
still in the same linkage unit). On ELF, such a relocation (e.g. R_X86_64_PC32) referencing a
STB_GLOBAL STV_DEFAULT object can cause a linker error in a -shared link.
If the linkage is changed to available_externally, the dso_local flag should be dropped, so that no
direct access will be generated.
The current behavior is benign, because -fpic does not assume dso_local
(clang/lib/CodeGen/CodeGenModule.cpp:shouldAssumeDSOLocal).
If we do that for -fno-semantic-interposition (D73865), there will be an
R_X86_64_PC32 linker error without this patch.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D74751
If we infer the dso_local flag for -fpic, dso_local should be dropped
when we convert a GlobalVariable a declaration. dso_local causes the
generation of direct access (e.g. R_X86_64_PC32). Such relocations referencing
STB_GLOBAL STV_DEFAULT objects are not allowed in a -shared link.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D74749
Summary:
A recent change to enable more importing of global variables with
references exposed some efficiency issues with export computation.
See D73724 for more information and detailed analysis.
The first was specific to variable importing. The code was marking every
copy of a referenced value (from possibly thousands of files in the case
of linkonce_odr) as exported, and we only need to mark the copy in the
module containing the variable def being imported as exported. The
reason is that this is tracking what values are newly exported as a
result of importing. Anything that was defined in another module and
simply used in the exporting module is already exported, and would have
been identified by the caller (e.g. the LTO API implementations).
The second issue is that the code was re-adding previously exported
values (along with all references). It is easy to identify when a
variable was already imported into the same module (via the
import list insert call return value), and we already did this for
function importing. However, what we weren't doing for either function
or variable importing was avoiding a re-insertion when it was previously
exported into a different importing module. The reason we couldn't do
this is there was no way of telling from the export list whether it was
previously inserted there because its definition was exported (in which
case we already marked all its references as exported) from when it was
inserted there because it was referenced by another exported value (in
which case we haven't yet inserted its own references).
To address this we can restructure the way the export list is
constructed. This patch only adds the actual imported definitions
(variable or function) to the export list for its module during the
import computation. After import computation is complete, where we were
already post-processing the export list we go ahead and add all
references made by those exported values to the export list.
These changes speed up the thin link not only with constant variable
importing enabled, but also without (due to the efficiency improvement
in function importing).
Some thin link user time measurements for one large application, average
of 5 runs:
With constant variable importing enabled:
- without this patch: 479.5s
- with this patch: 74.6s
Without constant variable importing enabled:
- without this patch: 80.6s
- with this patch: 70.3s
Note I have not re-enabled constant variable importing here, as I would
like to do additional compile time measurements with these fixes first.
Reviewers: evgeny777
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73851
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
Add an option to allow the attribute propagation on the index to be
disabled, to allow a workaround for issues (such as that fixed by
D70977).
Also move the setting of the WithAttributePropagation flag on the index
into propagateAttributes(), and remove some old stale code that predated
this flag and cleared the maybe read/write only bits when we need to
disable the propagation (previously only when importing disabled, now
also when the new option disables it).
Reviewers: evgeny777, steven_wu
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70984