Not every NumPy type (e.g., the `ml_dtypes.bfloat16` NumPy extension
type) has a type in the Python buffer protocol, so exporting such a
buffer with `PyBUF_FORMAT` may fail.
However, we don't care about the self-reported type of a buffer if the
user provides an explicit type. In the case that an explicit type is
provided, don't request the format from the buffer protocol, which
allows arrays whose element types are unknown to the buffer protocol to
be passed.
Reviewed By: jpienaar, ftynse
Differential Revision: https://reviews.llvm.org/D155209
Update remaining `PyAttribute`-returning APIs to return `MlirAttribute` instead,
so that they go through the downcasting mechanism.
Reviewed By: makslevental
Differential Revision: https://reviews.llvm.org/D154462
depends on D150839
This diff uses `MlirTypeID` to register `TypeCaster`s (i.e., `[](PyType pyType) -> DerivedTy { return pyType; }`) for all concrete types (i.e., `PyConcrete<...>`) that are then queried for (by `MlirTypeID`) and called in `struct type_caster<MlirType>::cast`. The result is that anywhere an `MlirType mlirType` is returned from a python binding, that `mlirType` is automatically cast to the correct concrete type. For example:
```
c0 = arith.ConstantOp(f32, 0.0)
# CHECK: F32Type(f32)
print(repr(c0.result.type))
unranked_tensor_type = UnrankedTensorType.get(f32)
unranked_tensor = tensor.FromElementsOp(unranked_tensor_type, [c0]).result
# CHECK: UnrankedTensorType
print(type(unranked_tensor.type).__name__)
# CHECK: UnrankedTensorType(tensor<*xf32>)
print(repr(unranked_tensor.type))
```
This functionality immediately extends to typed attributes (i.e., `attr.type`).
The diff also implements similar functionality for `mlir_type_subclass`es but in a slightly different way - for such types (which have no cpp corresponding `class` or `struct`) the user must provide a type caster in python (similar to how `AttrBuilder` works) or in cpp as a `py::cpp_function`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D150927
Right now the bindings assume that all DenseElementsAttrs correspond to tensor values,
making it impossible to create vector-typed constants. I didn't want to change the API
significantly, so I opted for reusing the current signature of `.get`. Its `type` argument
now accepts both element types (in which case `shape` and `signless` can be specified too),
or a shaped type, which specifies the full type of the created attr (`shape` cannot be specified
in that case).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D145053
This updates most (all?) error-diagnostic-emitting python APIs to
capture error diagnostics and include them in the raised exception's
message:
```
>>> Operation.parse('"arith.addi"() : () -> ()'))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
mlir._mlir_libs.MLIRError: Unable to parse operation assembly:
error: "-":1:1: 'arith.addi' op requires one result
note: "-":1:1: see current operation: "arith.addi"() : () -> ()
```
The diagnostic information is available on the exception for users who
may want to customize the error message:
```
>>> try:
... Operation.parse('"arith.addi"() : () -> ()')
... except MLIRError as e:
... print(e.message)
... print(e.error_diagnostics)
... print(e.error_diagnostics[0].message)
...
Unable to parse operation assembly
[<mlir._mlir_libs._mlir.ir.DiagnosticInfo object at 0x7fed32bd6b70>]
'arith.addi' op requires one result
```
Error diagnostics captured in exceptions aren't propagated to diagnostic
handlers, to avoid double-reporting of errors. The context-level
`emit_error_diagnostics` option can be used to revert to the old
behaviour, causing error diagnostics to be reported to handlers instead
of as part of exceptions.
API changes:
- `Operation.verify` now raises an exception on verification failure,
instead of returning `false`
- The exception raised by the following methods has been changed to
`MLIRError`:
- `PassManager.run`
- `{Module,Operation,Type,Attribute}.parse`
- `{RankedTensorType,UnrankedTensorType}.get`
- `{MemRefType,UnrankedMemRefType}.get`
- `VectorType.get`
- `FloatAttr.get`
closes#60595
depends on D144804, D143830
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D143869
Previously only accessing values for `index` and signless int types
would work; signed and unsigned ints would hit an assert in
`IntegerAttr::getInt`. This exposes `IntegerAttr::get{S,U}Int` to the C
API and calls the appropriate function from the python bindings.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120194
This extends dense attribute element access to support 8b and 16b ints.
Also extends the corresponding parts of the C api.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D117731
There is no completely automated facility for generating stubs that are both accurate and comprehensive for native modules. After some experimentation, I found that MyPy's stubgen does the best at generating correct stubs with a few caveats that are relatively easy to fix:
* Some types resolve to cross module symbols incorrectly.
* staticmethod and classmethod signatures seem to always be completely generic and need to be manually provided.
* It does not generate an __all__ which, from testing, causes namespace pollution to be visible to IDE code completion.
As a first step, I did the following:
* Ran `stubgen` for `_mlir.ir`, `_mlir.passmanager`, and `_mlirExecutionEngine`.
* Manually looked for all instances where unnamed arguments were being emitted (i.e. as 'arg0', etc) and updated the C++ side to include names (and re-ran stubgen to get a good initial state).
* Made/noted a few structural changes to each `pyi` file to make it minimally functional.
* Added the `pyi` files to the CMake rules so they are installed and visible.
To test, I added a `.env` file to the root of the project with `PYTHONPATH=...` set as per instructions. Then reload the developer window (in VsCode) and verify that completion works for various changes to test cases.
There are still a number of overly generic signatures, but I want to check in this low-touch baseline before iterating on more ambiguous changes. This is already a big improvement.
Differential Revision: https://reviews.llvm.org/D114679
* Need to investigate the proper solution to https://github.com/pybind/pybind11/issues/3336 or engineer something different.
* The attempt to produce an empty buffer_info as a workaround triggers asan/ubsan.
* Usage of this API does not arise naturally in practice yet, and it is more important to be asan/crash clean than have a solution right now.
* Switching back to raising an exception, even though that triggers terminate().
* This already half existed in terms of reading the raw buffer backing a DenseElementsAttr.
* Documented the precise expectations of the buffer layout.
* Extended the Python API to support construction from bitcasted buffers, allowing construction of all primitive element types (even those that lack a compatible representation in Python).
* Specifically, the Python API can now load all integer types at all bit widths and all floating point types (f16, f32, f64, bf16).
Differential Revision: https://reviews.llvm.org/D111284
Provide a couple of quality-of-life usability improvements for Python bindings,
in particular:
* give access to the list of types for the list of op results or block
arguments, similarly to ValueRange->TypeRange,
* allow for constructing empty dictionary arrays,
* support construction of array attributes by concatenating an existing
attribute with a Python list of attributes.
All these are required for the upcoming customization of builtin and standard
ops.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D110946
* This allows multiple MLIR-API embedding downstreams to co-exist in the same process.
* I believe this is the last thing needed to enable isolated embedding.
Differential Revision: https://reviews.llvm.org/D108605
This CL introduces a generic attribute (called "encoding") on tensors.
The attribute currently does not carry any concrete information, but the type
system already correctly determines that tensor<8xi1,123> != tensor<8xi1,321>.
The attribute will be given meaning through an interface in subsequent CLs.
See ongoing discussion on discourse:
[RFC] Introduce a sparse tensor type to core MLIR
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944
A sparse tensor will look something like this:
```
// named alias with all properties we hold dear:
#CSR = {
// individual named attributes
}
// actual sparse tensor type:
tensor<?x?xf64, #CSR>
```
I see the following rough 5 step plan going forward:
(1) introduce this format attribute in this CL, currently still empty
(2) introduce attribute interface that gives it "meaning", focused on sparse in first phase
(3) rewrite sparse compiler to use new type, remove linalg interface and "glue"
(4) teach passes to deal with new attribute, by rejecting/asserting on non-empty attribute as simplest solution, or doing meaningful rewrite in the longer run
(5) add FE support, document, test, publicize new features, extend "format" meaning to other domains if useful
Reviewed By: stellaraccident, bondhugula
Differential Revision: https://reviews.llvm.org/D99548
* IRModules.cpp -> (IRCore.cpp, IRAffine.cpp, IRAttributes.cpp, IRTypes.cpp).
* The individual pieces now compile in the 5-15s range whereas IRModules.cpp was starting to approach a minute (didn't capture a before time).
* More fine grained splitting is possible, but this represents the most obvious.
Differential Revision: https://reviews.llvm.org/D98978