This removes the `{BENIGN,COMPATIBLE}{,_ENUM,_VALUE}_LANGOPT` X macros
controlling `LangOptions`. These are permutations of the base `LANGOPT`,
`ENUM_LANGOPT` and `VALUE_LANGOPT` X macros that also carry the
information of their effect on AST (and therefore module compatibility).
Their functionality is now implemented by passing `Benign`, `Compatible`
or `NotCompatible` argument to the base X macros and using C++17 `if
constexpr` in the clients to achieve the same codegen.
This PR solves this FIXME:
```
// FIXME: Clients should be able to more easily select whether they want
// different levels of compatibility versus how to handle different kinds
// of option.
```
The base X macros are preserved, since they are used in `LangOptions.h`
to generate different kinds of field and function declarations for
flags, values and enums, which can't be achieved with `if constexpr`.
The new syntax also forces developers to think about compatibility when
adding new language option, hopefully reducing the number of new options
that are affecting by default even though they are benign or compatible.
Note that the `BENIGN_` macros used to forward to their `COMPATIBLE_`
counterparts. I don't think this ever kicked in, since there are no
clients of the `.def` file that define `COMPATIBLE_` without also
defining `BENIGN_`. However, this might be something downstream forks
need to take care of by doing `if constexpr (CK::Compatibility ==
CK::Benign || CK::Compatibility == CK::Compatible)` in place of `#define
COMPATIBLE_`.
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
While investigating the recent warnings around FEM_Indeterminate I
noticed that the macro name for FPOptions.def was given the very generic
name `OPTION`.
This PR renames it to FP_OPTION instead.
Clang uses a long-time special handling of the case where 3 element
vector loads and stores are performed as 4 element, and then a
shufflevector is used to extract the used elements. Odd sized vector
codegen should now work reasonably well.
This patch removes the compiler argument `-fpreserve-vec3-type` and adds
a target hook to determine if the special handling of vector type is
needed.
---------
Co-authored-by: Matt Arsenault <Matthew.Arsenault@amd.com>
This change adds a new HLSL 202y language mode. Currently HLSL 202y is
planned to add `auto` and `constexpr`.
This change updates extension diagnostics to state that lambadas are a
"clang HLSL" extension (since we have no planned release yet to include
them), and that `auto` is a HLSL 202y extension when used in earlier
language modes.
Note: This PR does temporarily work around some differences between HLSL
2021 and 202x in Clang by changing test cases to explicitly specify
202x. A subsequent PR will update 2021's language flags to match 202x.
Currently `__FINITE_MATH_ONLY__` is set when `FiniteMathOnly`. And
`FiniteMathOnly` is set when `NoHonorInfs` && `NoHonorNans` is true. But
what happens one of the latter flags is false?
To avoid potential inconsistencies, the internal option `FiniteMathOnly`
is removed option and the macro `__FINITE_MATH_ONLY__` is set when
`NoHonorInfs` && `NoHonorNans`.
This enables raw R"" string literals in C in some language modes
and adds an option to disable or enable them explicitly as an
extension.
Background: GCC supports raw string literals in C in `-gnuXY` modes
starting with gnu99. This pr both enables raw string literals in gnu99
mode and later in C and adds an `-f[no-]raw-string-literals` flag to override
this behaviour. The decision not to enable raw string literals in gnu89
mode, according to the GCC devs, is intentional as that mode is supposed
to be used for ‘old code’ that they don’t want to break; we’ve decided to
match GCC’s behaviour here as well.
The `-fraw-string-literals` flag can additionally be used to enable raw string
literals in modes where they aren’t enabled by default (such as c99—as
opposed to gnu99—or even e.g. C++03); conversely, the negated flag can
be used to disable them in any gnuXY modes that *do* provide them by
default, or to override a previous flag. However, we do *not* support
disabling raw string literals (or indeed either of these two options) in
C++11 mode and later, because we don’t want to just start supporting
disabling features that are actually part of the language in the general case.
This fixes#85703.
This adds a language standard mode for the latest C standard. While
WG14 is hoping for a three-year cycle, it is not clear that the next
revision of C will be in 2026 and so a flag was not created for c26
specifically.
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
24 under clang/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".
This does the rename for most internal uses of C2x, but does not rename
or reword diagnostics (those will be done in a follow-up).
I also updated standards references and citations to the final wording
in the standard.
During the ISO C++ Committee meeting plenary session the C++23 Standard
has been voted as technical complete.
This updates the reference to c++2b to c++23 and updates the __cplusplus
macro.
Drive-by fixes c++1z -> c++17 and c++2a -> c++20 when seen.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D149553
When reseting modular options, propagate the values from certain options
that have ImpliedBy relations instead of setting to the default. Also,
verify in clang-scan-deps that the command line produced round trips
exactly.
Ideally we would automatically derive the set of options that need this
kind of propagation, but for now there aren't very many impacted.
rdar://105148590
Differential Revision: https://reviews.llvm.org/D143446
This is a recommit of b822efc7404bf09ccfdc1ab7657475026966c3b2,
reverted in dc34d8df4c48b3a8f474360970cae8a58e6c84f0. The commit caused
fails because the test ast-print-fp-pragmas.c did not specify particular
target, and it failed on targets which do not support constrained
intrinsics. The original commit message is below.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
On some buildbots test `ast-print-fp-pragmas.c` fails, need to investigate it.
This reverts commit 0401fd12d4aa0553347fe34d666fb236d8719173.
This reverts commit b822efc7404bf09ccfdc1ab7657475026966c3b2.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
HLSL supports half type.
When enable-16bit-types is not set, half will be treated as float.
When enable-16bit-types is set, half will be treated like real 16bit float type and map to llvm half type.
Also change CXXABI to Microsoft to match dxc behavior.
The mangle name for half is "$f16@" when half is treat as native half type and "$halff@" when treat as float.
In AST, half is still half.
The special thing is done at clang codeGen, when NativeHalfType is false, half will translated into float.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124790
Vector types in hlsl is using clang ext_vector_type.
Declaration of vector types is in builtin header hlsl.h.
hlsl.h will be included by default for hlsl shader.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D125052
This reverts commit e576280380d3f5221cfcc14e9fabeacc8506a43c.
Breaks tests on mac/arm, see comment on https://reviews.llvm.org/D125052
Also revert follow-up "[gn build] Port e576280380d3"
This reverts commit 1e01b1ec72031fcaceb4e77e1c5c8e34f1e862e8.
Vector types in hlsl is using clang ext_vector_type.
Declaration of vector types is in builtin header hlsl.h.
hlsl.h will be included by default for hlsl shader.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D125052
When Clang generates the path prefix (i.e. the path of the directory
where the file is) when generating FILE, __builtin_FILE(), and
std::source_location, Clang uses the platform-specific path separator
character of the build environment where Clang _itself_ is built. This
leads to inconsistencies in Chrome builds where Clang running on
non-Windows environments uses the forward slash (/) path separator
while Clang running on Windows builds uses the backslash (\) path
separator. To fix this, we add a flag -ffile-reproducible (and its
inverse, -fno-file-reproducible) to have Clang use the target's
platform-specific file separator character.
Additionally, the existing flags -fmacro-prefix-map and
-ffile-prefix-map now both imply -ffile-reproducible. This can be
overriden by setting -fno-file-reproducible.
[0]: https://crbug.com/1310767
Differential revision: https://reviews.llvm.org/D122766
C89 allowed a type specifier to be elided with the resulting type being
int, aka implicit int behavior. This feature was subsequently removed
in C99 without a deprecation period, so implementations continued to
support the feature. Now, as with implicit function declarations, is a
good time to reevaluate the need for this support.
This patch allows -Wimplicit-int to issue warnings in C89 mode (off by
default), defaults the warning to an error in C99 through C17, and
disables support for the feature entirely in C2x. It also removes a
warning about missing declaration specifiers that really was just an
implicit int warning in disguise and other minor related cleanups.
The function is moved from clangFrontend to clangBasic, which allows tools
(e.g. clang pseudoparser) which don't depend on clangFrontend to use.
Differential Revision: https://reviews.llvm.org/D121375
This change defines a helper function getOpenCLCompatibleVersion()
inside LangOptions class. The function contains mapping between
C++ for OpenCL versions and their corresponding compatible OpenCL
versions. This mapping function should be updated each time a new
C++ for OpenCL language version is introduced. The helper function
is expected to simplify conditions on OpenCL C and C++ for OpenCL
versions inside compiler code.
Code refactoring performed.
Differential Revision: https://reviews.llvm.org/D108693
C++ for OpenCL version 2021 and later are expected to consist of a
major version number only. Therefore, a different constructor for
`VersionTuple` needs to be called when reporting language version.
Differential Revision: https://reviews.llvm.org/D108379
Some Clang diagnostics could only report OpenCL C version. Because
C++ for OpenCL can be used as an alternative to OpenCL C, the text
for diagnostics should reflect that.
Desrciptions modified for these diagnostics:
`err_opencl_unknown_type_specifier`
`warn_option_invalid_ocl_version`
`err_attribute_requires_opencl_version`
`warn_opencl_attr_deprecated_ignored`
`ext_opencl_ext_vector_type_rgba_selector`
Differential Revision: https://reviews.llvm.org/D107648
This matches the behavior of GCC.
Patch does not change remapping logic itself, so adding one simple smoke test should be enough.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107393
This patch responds to a comment from @vitalybuka in D96203: suggestion to
do the change incrementally, and start by modifying this file name. I modified
the file name and made the other changes that follow from that rename.
Reviewers: vitalybuka, echristo, MaskRay, jansvoboda11, aaron.ballman
Differential Revision: https://reviews.llvm.org/D96974
The `LangStandard::Kind` parsed from command line arguments is used to set up some `LangOption` defaults, but isn't stored anywhere.
To be able to generate `-std=` (in future patch), we need `CompilerInvocation` to not forget it.
This patch demonstrates another use-case: using `LangStd` to set up defaults of marshalled options.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95342
Once the new option parsing system is committed, this will allow to generate a
check to ensure that correct command line generation happens
Differential Revision: https://reviews.llvm.org/D86290
This reverts commit defd43a5b393bb63a902042adf578081b03b171d.
with correction to solve msan report
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit b55d723ed61052b77e720dcffecac43abe873186.
Reapply Modify FPFeatures to use delta not absolute settings
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit 3a748cbf86cea3844fada04eeff4cc64b01f67e0.
I'm reverting this commit because I forgot to format the commit message
propertly. Sorry for the thrash.
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Generate a printable OpenCL language version number in a single place
and select between the OpenCL C or OpenCL C++ version accordingly.
Differential Revision: https://reviews.llvm.org/D46382
llvm-svn: 331766
This patch makes it an error to have a mismatch between the enabled
sanitizers in a CU, and in any module being imported into the CU. Only
mismatches between non-modular sanitizers are treated as errors.
This patch also includes non-modular sanitizers in module hashes, in
order to ensure module rebuilds occur when -fsanitize=X is toggled on
and off for non-modular sanitizers, and to cut down on module rebuilds
when the option is toggled for modular sanitizers.
This fixes a longstanding issue with implicit modules and sanitizers,
which Duncan originally diagnosed.
When building with implicit modules it's possible to hit a scenario
where modules are built without -fsanitize=address, and are subsequently
imported into CUs with -fsanitize=address enabled. This causes strange
failures at runtime. The case Duncan found affects libcxx, since its
vector implementation behaves differently when ASan is enabled.
Implicit module builds should "just work" when -fsanitize=X is toggled
on and off across multiple compiler invocations, which is what this
patch does.
Differential Revision: https://reviews.llvm.org/D32724
llvm-svn: 304463
Summary:
The -fxray-always-instrument= and -fxray-never-instrument= flags take
filenames that are used to imbue the XRay instrumentation attributes
using a whitelist mechanism (similar to the sanitizer special cases
list). We use the same syntax and semantics as the sanitizer blacklists
files in the implementation.
As implemented, we respect the attributes that are already defined in
the source file (i.e. those that have the
[[clang::xray_{always,never}_instrument]] attributes) before applying
the always/never instrument lists.
Reviewers: rsmith, chandlerc
Subscribers: jfb, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30388
llvm-svn: 299041
r276653 suppressed the pragma once warning when generating a PCH file.
This patch extends that to any main file for which clang is told (with
the -x option) that it's a header file. It will also suppress the
warning "#include_next in primary source file".
Differential Revision: http://reviews.llvm.org/D25989
llvm-svn: 285295
option. Previously these options could both be used to specify that you were
compiling the implementation file of a module, with a different set of minor
bugs in each case.
This change removes -fmodule-implementation-of, and instead tracks a flag to
determine whether we're currently building a module. -fmodule-name now behaves
the same way that -fmodule-implementation-of previously did.
llvm-svn: 261372
Summary:
Allow user to provide multiple blacklists by passing several
-fsanitize-blacklist= options. These options now don't override
default blacklist from Clang resource directory, which is always
applied (which fixes PR22431).
-fno-sanitize-blacklist option now disables all blacklists that
were specified earlier in the command line (including the default
one).
This change depends on http://reviews.llvm.org/D7367.
Test Plan: regression test suite
Reviewers: timurrrr
Subscribers: cfe-commits, kcc, pcc
Differential Revision: http://reviews.llvm.org/D7368
llvm-svn: 228156
Get rid of ugly SanitizerOptions class thrust into LangOptions:
* Make SanitizeAddressFieldPadding a regular language option,
and rely on default behavior to initialize/reset it.
* Make SanitizerBlacklistFile a regular member LangOptions.
* Introduce the helper class "SanitizerSet" to represent the
set of enabled sanitizers and make it a member of LangOptions.
It is exactly the entity we want to cache and modify in CodeGenFunction,
for instance. We'd also be able to reuse SanitizerSet in
CodeGenOptions for storing the set of recoverable sanitizers,
and in the Driver to represent the set of sanitizers
turned on/off by the commandline flags.
No functionality change.
llvm-svn: 221653