This patch aims to consolidate the OperatingSystem scripting affordance
by introducing a stable interface that conforms to the
Scripted{,Python}Interface.
This unify the way we call into python methods from lldb while
also improving its capabilities by allowing us to pass lldb_private
objects are arguments.
Differential Revision: https://reviews.llvm.org/D159314
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch changes the way plugin objects used with Scripted Interfaces
are created.
Instead of implementing a different SWIG method to create the object for
every scripted interface, this patch makes the creation more generic by
re-using some of the ScriptedPythonInterface templated Dispatch code.
This patch also improves error handling of the object creation by
returning an `llvm::Expected`.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
As we're consolidating and streamlining the various scripting
affordances of lldb, we keep creating new interface files.
This patch groups all the current interface files into a separate sub
directory called `Interfaces` both in the core `Interpreter` directory
and the `ScriptInterpreter` plugin directory.
Differential Revision: https://reviews.llvm.org/D158833
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Instead of copying memory out of the PythonString (via a std::string)
and then using that to create a ConstString, it would make more sense to
just create the ConstString from the original StringRef in the first
place.
The comment and radar referenced PyThreadState_Get which is no longer
used there and instead has been replaced to a call to
PyThreadState_GetDict which has different semantics. Unlike
PyThreadState_Get, it can return NULL and it is okay to call this
function when no current thread state is available.
This patch adds the ability to pass native types from the script
interpreter to methods that use a {SB,}StructuredData argument.
To do so, this patch changes the `ScriptedObject` struture that holds
the pointer to the script object as well as the originating script
interpreter language. It also exposes that to the SB API via a new class
called `SBScriptObject`.
This structure allows the debugger to parse the script object and
convert it to a StructuredData object. If the type is not compatible
with the StructuredData types, we will store its pointer in a
`StructuredData::Generic` object.
This patch also adds some SWIG typemaps that checks the input argument to
ensure it's either an SBStructuredData object, in which case it just
passes it throught, or a python object that is NOT another SB type, to
provide some guardrails for the user.
rdar://111467140
Differential Revision: https://reviews.llvm.org/D155161
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch should fix some data races when a python script (i.e. a
Scripted Process) has a nested call to another python script (i.e. a
OperatingSystem Plugin), which can cause concurrent writes to the python
lock count.
This patch also fixes a data race happening when resetting the operating
system unique pointer.
To address these issues, both accesses is guarded by a mutex.
rdar://109413039
Differential Revision: https://reviews.llvm.org/D154271
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
None of these need to be in the ConstString StringPool. For the most
part they are constant strings and do not require fast comparisons.
I did change IOHandlerDelegateMultiline slightly -- specifically, the
`m_end_line` member always has a `\n` at the end of it now. This was so
that `IOHandlerGetControlSequence` can always return a StringRef. This
did require a slight change to `IOHandlerIsInputComplete` where we must
drop the newline before comparing it against the input parameter.
Differential Revision: https://reviews.llvm.org/D151597
This doesn't need to be in the ConstString StringPool. There's little
benefit to having these be unique, and we don't need fast comparisons on
them.
Differential Revision: https://reviews.llvm.org/D151524
This patch refactors the `StructuredData::Integer` class to make it
templated, makes it private and adds 2 public specialization for both
`int64_t` & `uint64_t` with a public type aliases, respectively
`SignedInteger` & `UnsignedInteger`.
It adds new getter for signed and unsigned interger values to the
`StructuredData::Object` base class and changes the implementation of
`StructuredData::Array::GetItemAtIndexAsInteger` and
`StructuredData::Dictionary::GetValueForKeyAsInteger` to support signed
and unsigned integers.
This patch also adds 2 new `Get{Signed,Unsigned}IntegerValue` to the
`SBStructuredData` class and marks `GetIntegerValue` as deprecated.
Finally, this patch audits all the caller of `StructuredData::Integer`
or `StructuredData::GetIntegerValue` to use the proper type as well the
various tests that uses `SBStructuredData.GetIntegerValue`.
rdar://105575764
Differential Revision: https://reviews.llvm.org/D150485
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Many SB classes have public constructors or methods involving types that
are private. Some are more obvious (e.g. containing lldb_private in the
name) than others (lldb::FooSP is usually std::shared_pointer<lldb_private::Foo>).
This commit explicitly does not address FileSP, so I'm leaving that one
alone for now.
Some of these were for other SB classes to use and should have been made
protected/private with a friend class entry added. Some of these were
public for some of the swig python helpers to use. I put all of those
functions into a class and made them static methods. The relevant SB
classes mark that class as a friend so they can access those
private/protected members.
I've also removed an outdated SBStructuredData test (can you guess which
constructor it was using?) and updated the other relevant tests.
Differential Revision: https://reviews.llvm.org/D150157
These don't really need to be in ConstStrings. It's nice that comparing
ConstStrings is fast (just a pointer comparison) but the cost of
creating the ConstString usually already includes the cost of doing a
StringRef comparison anyway, so this is just extra work and extra memory
consumption for basically no benefit.
Differential Revision: https://reviews.llvm.org/D149300
In 6c961ae, I've introduced a new explicit fully specialized templated method
`ScriptedPythonInterface::ReverseTransform(bool&, PythonObject, Status&)`.
However, that explicit specialization is causing GCC to choke when
building the file as shown here:
https://lab.llvm.org/buildbot/#/builders/217/builds/20430
To address that issue, this patch turns the method explicit specialization
into an method overload.
Differential Revision: https://reviews.llvm.org/D149218
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch improves breakpoint management when doing interactive
scripted process debugging.
In other to know which process set a breakpoint, we need to do some book
keeping on the multiplexer scripted process. When initializing the
multiplexer, we will first copy breakpoints that are already set on the
driving target.
Everytime we launch or resume, we should copy breakpoints from the
multiplexer to the driving process.
When creating a breakpoint from a child process, it needs to be set both
on the multiplexer and on the driving process. We also tag the created
breakpoint with the name and pid of the originator process.
This patch also implements all the requirement to achieve proper
breakpoint management. That involves:
- Adding python interator for breakpoints and watchpoints in SBTarget
- Add a new `ScriptedProcess.create_breakpoint` python method
Differential Revision: https://reviews.llvm.org/D148548
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
While debugging a Scripted Process, in order to update its state and
work nicely with lldb's execution model, it needs to toggle its private
state from running to stopped, which will result in broadcasting a
process state changed event to the debugger listener.
Originally, this state update was done systematically in the Scripted
Process C++ plugin, however in order to make scripted process
interactive, we need to be able to update their state dynamically.
This patch makes use of the recent addition of the
SBProcess::ForceScriptedState to programatically, and moves the
process private state update to the python implementation of the resume
method instead of doing it in ScriptedProcess::DoResume.
This patch also removes the unused ShouldStop & Stop scripted
process APIs, and adds new ScriptedInterface transform methods for
boolean arguments. This allow the user to programmatically decide if
after running the process, we should stop it (which is the default setting).
Differential Revision: https://reviews.llvm.org/D145295
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
../llvm-project/lldb/include/lldb/Interpreter/ScriptedProcessInterface.h:61:12:
warning: implicit conversion from 'unsigned long long' to 'size_t' (aka 'unsigned int')
changes value from 18446744073709551615 to 4294967295 [-Wconstant-conversion]
../llvm-project/lldb/source/Plugins/Process/scripted/ScriptedProcess.cpp:275:39:
warning: result of comparison of constant 18446744073709551615 with expression
of type 'size_t' (aka 'unsigned int') is always false [-Wtautological-constant-out-of-range-compare]
This happens because size_t on 32 bit is 32 bit, but LLDB_INVALID_OFFSET is
UINT64_MAX. Return lldb::offset_t instead, which is 64 bit everywhere.
DoWriteMemory still returns size_t but this is because every other
Process derived thing does that. As long as the failure check works I think
it should be fine.
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D146124
LLDB WoA buildbot is failing due to pid_t redefinition after recent changes in
lldb/source/Plugins/ScriptInterpreter/Python/ScriptedProcessPythonInterface.cpp.
Process.h includes PosixApi.h which defines pid_t. Python.h on windows also typedefs
pid_t. To make sure that we include Python.h before PosixApi this patch renforces
the workaround previously set up to guard this issue.
https://lab.llvm.org/buildbot/#/builders/219
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D145446
While debugging a Scripted Process, in order to update its state and
work nicely with lldb's execution model, it needs to toggle its private
state from running to stopped, which will result in broadcasting a
process state changed event to the debugger listener.
Originally, this state update was done systematically in the Scripted
Process C++ plugin, however in order to make scripted process
interactive, we need to be able to update their state dynamically.
This patch makes use of the recent addition of the
`SBProcess::ForceScriptedState` to programatically, and moves the
process private state update to the python implementation of the `resume`
method instead of doing it in `ScriptedProcess::DoResume`.
This patch also removes the unused `ShouldStop` & `Stop` scripted
process APIs, and adds new ScriptedInterface transform methods for
boolean arguments. This allow the user to programmatically decide if
after running the process, we should stop it (which is the default setting).
Differential Revision: https://reviews.llvm.org/D145295
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds memory writing capabilities to the Scripted Process plugin.
This allows to user to get a target address and a memory buffer on the
python scripted process implementation that the user can make processing
on before performing the actual write.
This will also be used to write trap instruction to a real process
memory to set a breakpoint.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The goal of the simple patch is to clean-up the scripted process
interface by removing methods that were introduced with the interface
originally, but that were never really implemented (get_thread_with_id &
get_registers_for_thread).
This patch also changes `get_memory_region_containing_address` to have a
base implementation (that retunrs `None`), instead of forcing the user
to override it in their derived class.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds process attach capabilities to the ScriptedProcess
plugin. This doesn't really expects a PID or process name, since the
process state is already script, however, this allows to create a
scripted process without requiring to have an executuble in the target.
In order to do so, this patch also turns the scripted process related
getters and setters from the `ProcessLaunchInfo` and
`ProcessAttachInfo` classes to a `ScriptedMetadata` instance and moves
it in the `ProcessInfo` class, so it can be accessed interchangeably.
This also adds the necessary SWIG wrappers to convert the internal
`Process{Attach,Launch}InfoSP` into a `SB{Attach,Launch}Info` to pass it
as argument the scripted process python implementation and convert it
back to the internal representation.
rdar://104577406
Differential Revision: https://reviews.llvm.org/D143104
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new method to the Scripted Process interface,
GetCapabilities.
This returns a dictionary that contains a list of flags that the
ScriptedProcess instance supports. This can be used for instance, to
force symbol lookup, when loading dynamic libraries in the scripted process.
Differential Revision: https://reviews.llvm.org/D142059
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In order to run a {break,watch}point command, lldb can resolve to the
script interpreter to run an arbitrary piece of code or call into a
user-provided function. To do so, we will generate a wrapping function,
where we first copy lldb's internal dictionary keys into the
interpreter's global dictionary, copied inline the user code before
resetting the global dictionary to its previous state.
However, {break,watch}point commands can optionally return a value that
would tell lldb whether we should stop or not. This feature was
only implemented for breakpoint commands and since we inlined the user
code directly into the wrapping function, introducing an early return,
that caused lldb to let the interpreter global dictionary tinted with the
internal dictionary keys.
This patch fixes that issue while also adding the stopping behaviour to
watchpoint commands.
To do so, this patch refactors the {break,watch}point command creation
method, to let the lldb wrapper function generator know if the user code is
a function call or a arbitrary expression.
Then the wrapper generator, if the user input was a function call, the
wrapper function will call the user function and save the return value into
a variable. If the user input was an arbitrary expression, the wrapper will
inline it into a nested function, call the nested function and save the
return value into the same variable. After resetting the interpreter global
dictionary to its previous state, the generated wrapper function will return
the varible containing the return value.
rdar://105461140
Differential Revision: https://reviews.llvm.org/D144688
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The Python script interpreter imports `pydoc` during initialization, but this can be
slow in some cases, and doesn't seem to be necessary any more.
This can be slow because pydoc may execute shell commands (for example `xcrun` on
macOS). The shell commands may have variable performance, depending on their caches and
search space.
The 2012 bug report for the original commit (f71a8399997bfdc1ddeeb30c6a8897554a11c382)
says the following:
> "script help" in lldb pipes the help documentation through less(1) but there's some
> problem with the key handling and often the keys you'd use to move in less (space to
> move down a page, 'q' to quit) are not received by less (they're going to lldb
> instead)
This was resolved at the time by overriding `pydoc`'s pager to be the `plainpager`
function.
I have manually tested `script help(lldb.SBDebugger)` and found no issues with the
pager, including using "space" for paging, "/" for searching, and "q" for quitting.
The presumption is that lldb and/or Python have improved I/O handling that eliminates
the original problem.
The original bug report gave an ~/.lldbinit workaround:
```
script import pydoc; pydoc.pager = pydoc.plainpager
```
Note that calling Python's `help()` will import `pydoc`, but this will only happen for
users who use `help()` from the `script` command.
Differential Revision: https://reviews.llvm.org/D144138
This patch should address a bug when a user have multiple scripted
processes in the same debugging session.
In order for the scripted process plugin to be able to call into the
scripted object instance methods to fetch the necessary data to
reconstruct its state, the scripted process plugin calls into a
scripted process interface, that has a reference to the created script
object instance.
However, prior to this patch, we only had a single instance of the
scripted process interface, living the script interpreter. So every time
a new scripted process plugin was created, it would overwrite the script
object instance that was held by the single scripted process interface
in the script interpreter.
That would cause all the method calls made to the scripted process
interface to be dispatched by the last instanciated script object
instance, which is wrong.
In order to prevent that, this patch moves the scripted process
interface reference to be help by the scripted process plugin itself.
rdar://104882562
Differential Revision: https://reviews.llvm.org/D143308
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces both the ScriptedPlatformInterface and the
ScriptedPlatformPythonInterface. As the name suggests, these calls will
be used to call into the Scripted Platform python implementation from
the C++ Scripted Platform plugin instance.
Differential Revision: https://reviews.llvm.org/D139251
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces both the Scripted Platform python base
implementation and an example for it.
The base implementation is embedded in lldb python module under
`lldb.plugins.scripted_platform`.
This patch also refactor the various SWIG methods to create scripted
objects into a single method, that is now shared between the Scripted
Platform, Process and Thread. It also replaces the target argument by a
execution context object.
Differential Revision: https://reviews.llvm.org/D139250
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch makes `ScriptedPythonInterface::GetStatusFromMethod` take a
parameter pack as an argument. That will allow it to pass arbitrary
arguments to the python method.
Differential Revision: https://reviews.llvm.org/D139248
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
We're suggesting people use the form of the command that takes an exe_ctx - it
is both more convenient and more correct - since you should not be using
GetSelected{Target, Process, etc.} in commands.
This patch should fix the build failures following 7e01924 when building
with GCC. These failures were mostly caused by GCC's poor support of C++
templates (namely, partial template specialization).
To work around that problem, this patch makes use of overloading and get
rid of the templated structs and specialized structs.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch removes all occurences to GetPythonValueFormatString and
use the template specialization of PythonFormat structs instead.
Differential Revision: https://reviews.llvm.org/D134033
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch improves the ScriptedPythonInterface::Dispatch method to
support passing lldb_private types to the python implementation.
This will allow, for instance, the Scripted Process python implementation
to report errors when reading memory back to lldb.
To do so, the Dispatch method will transform the private types in the
parameter pack into `PythonObject`s to be able to pass them down to the
python methods.
Then, if the call succeeded, the transformed arguments will be converted
back to their original type and re-assigned in the parameter pack, to
ensure pointers and references behaviours are preserved.
This patch also updates various scripted process python class and tests
to reflect this change.
rdar://100030995
Differential Revision: https://reviews.llvm.org/D134033
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch extends the template specialization of PythonFormat structs
and makes use of the pre-existing PythonObject class to format arguments
and pass them to the right method, before calling it.
This is a preparatory patch to merge PythonFormat with SWIGPythonBridge's
GetPythonValueFormatString methods.
Differential Revision: https://reviews.llvm.org/D138248
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
For an exception crashlog, the thread backtraces aren't usually very helpful
and instead, developpers look at the "Application Specific Backtrace" that
was generated by `objc_exception_throw`.
LLDB could already parse and symbolicate these Application Specific Backtraces
for regular textual-based crashlog, so this patch adds support to parse them
in JSON crashlogs, and materialize them a HistoryThread extending the
crashed ScriptedThread.
This patch also includes the Application Specific Information messages
as part of the process extended crash information log. To do so, the
ScriptedProcess Python interface has a new GetMetadata method that
returns an arbitrary dictionary with data related to the process.
rdar://93207586
Differential Revision: https://reviews.llvm.org/D126260
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new matching method for data formatters, in addition
to the existing exact typename and regex-based matching. The new method
allows users to specify the name of a Python callback function that
takes a `SBType` object and decides whether the type is a match or not.
Here is an overview of the changes performed:
- Add a new `eFormatterMatchCallback` matching type, and logic to handle
it in `TypeMatcher` and `SBTypeNameSpecifier`.
- Extend `FormattersMatchCandidate` instances with a pointer to the
current `ScriptInterpreter` and the `TypeImpl` corresponding to the
candidate type, so we can run registered callbacks and pass the type
to them. All matcher search functions now receive a
`FormattersMatchCandidate` instead of a type name.
- Add some glue code to ScriptInterpreterPython and the SWIG bindings to
allow calling a formatter matching callback. Most of this code is
modeled after the equivalent code for watchpoint callback functions.
- Add an API test for the new callback-based matching feature.
For more context, please check the RFC thread where this feature was
originally discussed:
https://discourse.llvm.org/t/rfc-python-callback-for-data-formatters-type-matching/64204/11
Differential Revision: https://reviews.llvm.org/D135648
Split the read thread support from Communication into a dedicated
ThreadedCommunication subclass. The read thread support is used only
by a subset of Communication consumers, and it adds a lot of complexity
to the base class. Furthermore, having a dedicated subclass makes it
clear whether a particular consumer needs to account for the possibility
of read thread being running or not.
The modules currently calling `StartReadThread()` are updated to use
`ThreadedCommunication`. The remaining modules use the simplified
`Communication` class.
`SBCommunication` is changed to use `ThreadedCommunication` in order
to avoid changing the public API.
`CommunicationKDP` is updated in order to (hopefully) compile with
the new code. However, I do not have a Darwin box to test it, so I've
limited the changes to the bare minimum.
`GDBRemoteCommunication` is updated to become a `Broadcaster` directly.
Since it does not inherit from `ThreadedCommunication`, its event
support no longer collides with the one used for read thread and can
be implemented cleanly. The support for
`eBroadcastBitReadThreadDidExit` is removed from the code -- since
the read thread was not used, this event was never reported.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D133251