10 Commits

Author SHA1 Message Date
Hans Wennborg
8c79706e89 Revert r347417 "Re-Reinstate 347294 with a fix for the failures."
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:

  static bool f(int *a, int *b) {
    return !__builtin_constant_p(b - a) || (!(b - a));
  }

  int arr[] = {1,2,3};

  bool g() {
    return f(arr, arr + 3);
  }

  $ clang -O2 -S -emit-llvm a.cc -o -

g() should return true, but after r347417 it became false for some reason.

This also reverts the follow-up commits.

r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!

r347446:
> The result of is.constant() is unsigned.

r347480:
> A __builtin_constant_p() returns 0 with a function type.

r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.

r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.

llvm-svn: 347656
2018-11-27 14:01:40 +00:00
Bill Wendling
6ff1751f7d Re-Reinstate 347294 with a fix for the failures.
Don't try to emit a scalar expression for a non-scalar argument to
__builtin_constant_p().

Third time's a charm!

llvm-svn: 347417
2018-11-21 20:44:18 +00:00
Nico Weber
9f0246d473 Revert r347364 again, the fix was incomplete.
llvm-svn: 347389
2018-11-21 12:47:43 +00:00
Bill Wendling
91549ed15f Reinstate 347294 with a fix for the failures.
EvaluateAsInt() is sometimes called in a constant context. When that's the
case, we need to specify it as so.

llvm-svn: 347364
2018-11-20 23:24:16 +00:00
Kristof Umann
0a1f91c80c [analyzer] Restrict AnalyzerOptions' interface so that non-checker objects have to be registered
One of the reasons why AnalyzerOptions is so chaotic is that options can be
retrieved from the command line whenever and wherever. This allowed for some
options to be forgotten for a looooooong time. Have you ever heard of
"region-store-small-struct-limit"? In order to prevent this in the future, I'm
proposing to restrict AnalyzerOptions' interface so that only checker options
can be retrieved without special getters. I would like to make every option be
accessible only through a getter, but checkers from plugins are a thing, so I'll
have to figure something out for that.

This also forces developers who'd like to add a new option to register it
properly in the .def file.

This is done by

* making the third checker pointer parameter non-optional, and checked by an
  assert to be non-null.
* I added new, but private non-checkers option initializers, meant only for
  internal use,
* Renamed these methods accordingly (mind the consistent name for once with
  getBooleanOption!):
  - getOptionAsString -> getCheckerStringOption,
  - getOptionAsInteger -> getCheckerIntegerOption
* The 3 functions meant for initializing data members (with the not very
  descriptive getBooleanOption, getOptionAsString and getOptionAsUInt names)
  were renamed to be overloads of the getAndInitOption function name.
* All options were in some way retrieved via getCheckerOption. I removed it, and
  moved the logic to getStringOption and getCheckerStringOption. This did cause
  some code duplication, but that's the only way I could do it, now that checker
  and non-checker options are separated. Note that the non-checker version
  inserts the new option to the ConfigTable with the default value, but the
  checker version only attempts to find already existing entries. This is how
  it always worked, but this is clunky and I might end reworking that too, so we
  can eventually get a ConfigTable that contains the entire configuration of the
  analyzer.

Differential Revision: https://reviews.llvm.org/D53483

llvm-svn: 346113
2018-11-05 03:50:37 +00:00
Stephen Kelly
f2ceec4811 Port getLocStart -> getBeginLoc
Reviewers: teemperor!

Subscribers: jholewinski, whisperity, jfb, cfe-commits

Differential Revision: https://reviews.llvm.org/D50350

llvm-svn: 339385
2018-08-09 21:08:08 +00:00
George Karpenkov
8dad0e6cce [analyzer] Don't throw NSNumberObjectConversion warning on object initialization in if-expression
```
if (NSNumber* x = ...)
```
is a reasonable pattern in objc++, we should not warn on it.

rdar://35152234

Differential Revision: https://reviews.llvm.org/D44044

llvm-svn: 326619
2018-03-02 21:34:24 +00:00
Artem Dergachev
93fd165bfb [analyzer] NumberObjectConversion: Workaround for a linker error with modules.
A combination of C++ modules, variadic functions with more than one argument,
and const globals in headers (all three being necessary) causes some releases
of clang to misplace the matcher objects, which causes the linker to fail.

No functional change - the extra allOf() matcher is no-op here.

llvm-svn: 287045
2016-11-15 22:22:57 +00:00
Artem Dergachev
e14d881808 [analyzer] NumberObjectConversion: support more types, misc updates.
Support CFNumberRef and OSNumber objects, which may also be accidentally
converted to plain integers or booleans.

Enable explicit boolean casts by default in non-pedantic mode.

Improve handling for warnings inside macros.

Improve error messages.

Differential Revision: https://reviews.llvm.org/D25731

llvm-svn: 285533
2016-10-31 03:08:48 +00:00
Artem Dergachev
940c770d27 [analyzer] Add NumberObjectConversion checker.
When dealing with objects that represent numbers, such as Objective-C NSNumber,
the language provides little protection from accidentally interpreting
the value of a pointer to such object as the value of the number represented
by the object. Results of such mis-interpretation may be unexpected.

The checker attempts to fill this gap in cases when the code is obviously
incorrect.

With "Pedantic" option enabled, this checker enforces a coding style to
completely prevent errors of this kind (off by default).

Differential Revision: https://reviews.llvm.org/D22968

llvm-svn: 284473
2016-10-18 11:06:28 +00:00