Also remove recipes in the entry of the region that will be removed.
This makes sure we don't leave any dead users around. NFC at the moment,
but avoids causing issues in the future.
This patch converts the llvm.vector.splice intrinsic to
llvm.experimental.vp.splice, ensuring that fixed-order recurrences
execute correctly when tail folding by EVL is enable.
Due to the non-VFxUF penultimate EVL issue, the EVL from the previous
iteration will be preserved and used in llvm.experimental.vp.splice.
Add a new VPInstruction::Broadcast opcode and use it to materialize
explicit broadcasts of live-ins. The initial patch only materlizes the
broadcasts if the vector preheader dominates all uses that need it.
Later patches will pick the best valid insert point, thus retiring
implicit hoisting of broadcasts from VPTransformsState::get().
PR: https://github.com/llvm/llvm-project/pull/124644
Constract immutable VPIRBasicBlocks for all exit blocks up front and
keep a list of them. Same as the scalar header, they are leaf nodes of
the VPlan and won't change. Some exit blocks may be unreachable, e.g. if
the scalar epilogue always executes or depending on optimizations.
This simplifies both the way we retrieve the exit blocks as well as
hooking up the exit blocks.
PR: https://github.com/llvm/llvm-project/pull/128374
This is a copy of #126177, since it was automatically and permanently
closed because I messed up the source branch on my remote
This patch proposes to avoid converting widening recipes to VP
intrinsics during the EVL transform.
IIUC we initially did this to avoid `vl` toggles on RISC-V. However we
now have the RISCVVLOptimizer pass which mostly makes this redundant.
Emitting regular IR instead of VP intrinsics allows more generic
optimisations, both in the middle end and DAGCombiner, and we generally
have better patterns in the RISC-V backend for non-VP nodes. Sticking to
regular IR instructions is likely a lot less work than reimplementing
all of these optimisations for VP intrinsics, and on SPEC CPU 2017 we get
noticeably better code generation.
Run recipe simplification and dead recipe removal after VPlan-based
unrolling and optimizeForVFAndUF, to clean up any redundant or dead
recipes introduced by them. Currently this is NFC, as it removes the
corresponding removeDeadRecipes run in optimizeForVFAndUF and no
additional simplifications kick in after unrolling yet. That is changing
with https://github.com/llvm/llvm-project/pull/123655.
Note that with this change, pattern-matching is now applied after
EVL-based recipes have been introduced.
Trying to match VPWidenEVLRecipe when not explicitly requested might
apply a pattern with 2 operands to one with 3 due to the extra EVL
operand and VPWidenEVLRecipe being a subclass of VPWidenRecipe.
To prevent this, update Recipe_match::match to only match
VPWidenEVLRecipe if it is in the requested recipe types (RecipeTy).
PR: https://github.com/llvm/llvm-project/pull/125926
Consistently use hasScalarVFOnly instead of using
hasVF(ElementCount::getFixed(1)). Also add an assert to ensure all cases
are covered by hasScalarVFOnly.
Nothing in VPlan.h directly depends on VPTransformState, VPCostContext,
VPFRange, VPlanPrinter or VPSlotTracker. Move them out to a separate
header to reduce the size of widely used VPlan.h.
This is a first step towards more cleanly separating declarations in
VPlan.
Besides reducing VPlan.h's size, this also allows including additional
VPlan-related headers in VPlanHelpers.h for use there. An example is
using VPDominatorTree in VPTransformState
(https://github.com/llvm/llvm-project/pull/117138).
PR: https://github.com/llvm/llvm-project/pull/124104
This work feeds part of PR
https://github.com/llvm/llvm-project/pull/88385, and adds support for
vectorising
loops with uncountable early exits and outside users of loop-defined
variables. When calculating the final value from an uncountable early
exit we need to calculate the vector lane that triggered the exit,
and hence determine the value at the point we exited.
All code for calculating the last value when exiting the loop early
now lives in a new vector.early.exit block, which sits between the
middle.split block and the original exit block. Doing this required
two fixes:
1. The vplan verifier incorrectly assumed that the block containing
a definition always dominates the block of the user. That's not true
if you can arrive at the use block from multiple incoming blocks.
This is possible for early exit loops where both the early exit and
the latch jump to the same block.
2. We were adding the new vector.early.exit to the wrong parent loop.
It needs to have the same parent as the actual early exit block from
the original loop.
I've added a new ExtractFirstActive VPInstruction that extracts the
first active lane of a vector, i.e. the lane of the vector predicate
that triggered the exit.
NOTE: The IR generated for dealing with live-outs from early exit
loops is unoptimised, as opposed to normal loops. This inevitably
leads to poor quality code, but this can be fixed up later.
Add new runPass helpers to run a VPlan transformation. This makes it
easier to add additional checks/functionality for each transform run. In
this patch, an option is added to run the verifier after each VPlan
transform.
Follow-ups will use the same helper to also support printing VPlans
after each transform.
Note that the verifier at the moment requires there to be a canonical IV
and vector loop region, so the final lowering transforms aren't run via
runPass yet.
PR: https://github.com/llvm/llvm-project/pull/123640
Live-ins don't need to be handled, other than adding to the exit phi
recipe. Do that early and assert that otherwise the exit value is
defined in the vector loop region.
This should enable simply skipping other exit values that do not need
further fixing, e.g. if handling the exit value from the early exit
directly in handleUncountableEarlyExit.
PR: https://github.com/llvm/llvm-project/pull/123819
This reverts the revert commit 58326f1d5b5b379590af92dd129b2f3b3e96af46.
The build failure in sanitizer stage2 builds has been fixed with
0d39fe6f5bb3edf0bddec09a8c6417377390aeac.
Original commit message:
Model updating IV users directly in VPlan, replace fixupIVUsers.
Now simple extracts are created for all phis in the exit block during
initial VPlan construction. A later VPlan transform
(optimizeInductionExitUsers) replaces extracts of inductions with
their pre-computed values if possible.
This completes the transition towards modeling all live-outs directly in
VPlan.
There are a few follow-ups:
* emit extracts initially also for resume phis, and optimize them
tougher with IV exit users
* support for VPlans with multiple exits in optimizeInductionExitUsers.
Depends on https://github.com/llvm/llvm-project/pull/110004,
https://github.com/llvm/llvm-project/pull/109975 and
https://github.com/llvm/llvm-project/pull/112145.
Model updating IV users directly in VPlan, replace fixupIVUsers.
Now simple extracts are created for all phis in the exit block during
initial VPlan construction. A later VPlan transform
(optimizeInductionExitUsers) replaces extracts of inductions with
their pre-computed values if possible.
This completes the transition towards modeling all live-outs directly in
VPlan.
There are a few follow-ups:
* emit extracts initially also for resume phis, and optimize them
tougher with IV exit users
* support for VPlans with multiple exits in optimizeInductionExitUsers.
Depends on https://github.com/llvm/llvm-project/pull/110004,
https://github.com/llvm/llvm-project/pull/109975 and
https://github.com/llvm/llvm-project/pull/112145.
This fixes a miscompilation extracted from 525.x264_r, where we were
failing to update the runtime VF of a VPReverseVectorPointerRecipe.
We were removing a use of VF whilst iterating over the users() iterator,
which messed up the iterator in-flight and caused us to miss some
recipes. This fixes it by copying the users into a SmallVector first.
Fixes#122681Fixes#122682
Use the existing VPlan-based analysis to identify recipes that only have
their first lane demanded and transform them to uniform recpliate
recipes. This simplifies the generated code in some places and prepares
for fixing https://github.com/llvm/llvm-project/issues/122496.
Legalize extract-from-ends using uniform VPReplicateRecipe of wide
inductions to use regular VPReplicateRecipe, so the correct end value
is available.
Fixes https://github.com/llvm/llvm-project/issues/121745.
Update optimizeForVFAndUF to completely remove the vector loop region
when possible. At the moment, we cannot remove the region if it contains
* widened IVs: the recipe is needed to generate the step vector
* reductions: ComputeReductionResults requires the reduction phi recipe
for codegen.
Both cases can be addressed by more explicit modeling.
The patch also includes a number of updates to allow executing VPlans
without a vector loop region.
Depends on https://github.com/llvm/llvm-project/pull/110004
This fixes a crash when building SPEC CPU 2017 with EVL tail folding
when widening @llvm.log10 intrinsics.
@llvm.log10 and some other intrinsics don't have a corresponding VP
intrinsic, so this fixes the crash by removing the assert and bailing
instead.
This patch changes the way blocks are managed by VPlan. Previously all
blocks reachable from entry would be cleaned up when a VPlan is
destroyed. With this patch, each VPlan keeps track of blocks created for
it in a list and this list is then used to delete all blocks in the list
when the VPlan is destroyed. To do so, block creation is funneled
through helpers in directly in VPlan.
The main advantage of doing so is it simplifies CFG transformations, as
those do not have to take care of deleting any blocks, just adjusting
the CFG. This helps to simplify
https://github.com/llvm/llvm-project/pull/108378 and
https://github.com/llvm/llvm-project/pull/106748.
This also simplifies handling of 'immutable' blocks a VPlan holds
references to, which at the moment only include the scalar header block.
PR: https://github.com/llvm/llvm-project/pull/120918
Split DerivedIV simplification off from
https://github.com/llvm/llvm-project/pull/112145 and use to remove the
need for extra checks in createScalarIVSteps. Required an extra
simplification run after IV transforms.
When building SPEC CPU 2017 with RISC-V and EVL tail folding, this
assertion in VPTypeAnalysis would trigger during the transformation to
EVL recipes:
d8a0709b10/llvm/lib/Transforms/Vectorize/VPlanAnalysis.cpp (L135-L142)
It was caused by this recipe:
```
WIDEN ir<%shr> = vp.or ir<%add33>, ir<0>, vp<%6>
```
Having its type inferred as i16, when ir<%add33> and ir<0> had inferred
types of i32 somehow.
The cause of this turned out to be because the VPTypeAnalysis cache was
getting clobbered: In this transform we were erasing recipes but keeping
around the same mapping from VPValue* to Type*. In the meantime, new
recipes would be created which would have the same address as the old
value. They would then incorrectly get the old erased VPValue*'s cached
type:
```
--- before ---
0x600001ec5030: WIDEN ir<%mul21.neg> = vp.mul vp<%11>, ir<0>, vp<%6>
0x600001ec5450: <badref> <- some value that was erased
--- after ---
0x600001ec5030: WIDEN ir<%mul21.neg> = vp.mul vp<%11>, ir<0>, vp<%6>
0x600001ec5450: WIDEN ir<%shr> = vp.or ir<%add33>, ir<0>, vp<%6> <- a new value that happens to have the same address
```
This fixes this by deferring the erasing of recipes till after the
transformation.
The test case might be a bit flakey since it just happens to have the
right conditions to recreate this. I tried to add an assert in
inferScalarType that every VPValue in the cache was valid, but couldn't
find a way of telling if a VPValue had been erased.
---------
Co-authored-by: Florian Hahn <flo@fhahn.com>
This fixes a crash that shows up when building SPEC CPU 2017 with EVL
tail folding on RISC-V.
A VPWidenCastRecipe doesn't always have an underlying value, and in the
case of this crash this happens whenever a widened cast is created via
truncateToMinimalBitwidths.
Fix this by just using the opcode stored in the recipe itself.
I think a similar issue exists with VPWidenIntrinsicRecipe and how it's
widened, but I haven't run into any crashes with it just yet.
Properly set VPWidenIntOrFpInductionRecipe's debug location in the
recipe and use it, instead of using the debug location of the underlying
IR instruction.
As a first step to move towards modeling the full skeleton in VPlan,
start by wrapping IR blocks created during legacy skeleton creation in
VPIRBasicBlocks and hook them into the VPlan. This means the skeleton
CFG is represented in VPlan, just before execute. This allows moving
parts of skeleton creation into recipes in the VPBBs gradually.
Note that this allows retiring some manual DT updates, as this will be
handled automatically during VPlan execution.
PR: https://github.com/llvm/llvm-project/pull/114292
A more lightweight variant of
https://github.com/llvm/llvm-project/pull/109193,
which dispatches to multiple exit blocks via the middle blocks.
The patch also introduces a bit of required scaffolding to enable
early-exit vectorization, including an option. At the moment, early-exit
vectorization doesn't come with legality checks, and is only used if the
option is provided and the loop has metadata forcing vectorization. This
is only intended to be used for testing during bring-up, with @david-arm
enabling auto early-exit vectorization plugging in the changes from
https://github.com/llvm/llvm-project/pull/88385.
PR: https://github.com/llvm/llvm-project/pull/112138
Introduce a general recipe to generate a scalar phi. Lower
VPCanonicalIVPHIRecipe and VPEVLBasedIVRecipe to VPScalarIVPHIrecipe
before plan execution, avoiding the need for duplicated ::execute
implementations. There are other cases that could benefit, including
in-loop reduction phis and pointer induction phis.
Builds on a similar idea as
https://github.com/llvm/llvm-project/pull/82270.
PR: https://github.com/llvm/llvm-project/pull/114305