ArrayRef now has a new constructor that takes a parameter whose type
has data() and size(). This patch migrates:
ArrayRef<T>(X.data(), X.size()
to:
ArrayRef<T>(X)
fix https://github.com/llvm/llvm-project/issues/141789
The direct cause of infinite recursion is that `T` is changing from
`struct X` and `S<X>` infinitely, this pr add a check that if `T`
visited before then return false directly.
```plaintext
/home/backlight/llvm-project/clang/lib/Sema/SemaDeclCXX.cpp:7196] FD->getType().getAsString()=struct X, T.getAsString()=S<X>, FD->getType().getCanonicalType().getUnqualifiedType().getAsString()=struct X, CanUnqualT.getAsString()=struct S<struct X>,
/home/backlight/llvm-project/clang/lib/Sema/SemaDeclCXX.cpp:7196] FD->getType().getAsString()=S<X>, T.getAsString()=struct X, FD->getType().getCanonicalType().getUnqualifiedType().getAsString()=struct S<struct X>, CanUnqualT.getAsString()=struct X,
```
https://github.com/llvm/llvm-project/pull/104829 fix similar infinite
recursion, but I think it is no longer needed so I kind of revert it.
Use the definition of trivially relocatable types to short-circuit some
checks for trivial_abi.
Note that this is mostly a no-op as there is a lot of overlap between
trivial_abi and trivial relocatability (ie, I can't envision a scenario
in which there would be a trivially relocatable type that would not be
eligible for trivial_abi based on its special member function... which
is good!)
Note that for bases and members, we need to check CanPassInRegister
rather than just relocation. So we do these checks first, which leads to
better diagnostics.
Reland with debug traces to try to understand a bug that only happens on
one CI configuration
===
This introduces a way detect the libstdc++ version,
use that to enable workarounds.
The version is cached.
This should make it easier in the future to find and remove
these hacks.
I did not find the need for enabling a hack between or after
specific versions, so it's left as a future exercise.
We can extend this fature to other libraries as the need arise.
===
This introduces a way detect the libstdc++ version, use that to enable
workarounds.
The version is cached.
This should make it easier in the future to find and remove these hacks.
I did not find the need for enabling a hack between or after specific
versions, so it's left as a future exercise.
We can extend this fature to other libraries as the need arise.
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
`static_assert(std::is_xx_v<MyType>);` is a common pattern to check that
a type meets a requirement.
This patch produces diagnostics notes when such assertion fails. The
first type trait for which we provide detailed explanation is
std::is_trivially_relocatable.
We employ the same mechanisn when a type trait appears an an unsatisfied
atomic constraint.
I plan to also support `std::is_trivially_replaceable` in a follow up
PR, and hopefully, over time we can support more type traits.
Vector types cannot be directly compared, you get an error when you try
to do so. This patch causes the explicitly defaulted spaceship operator
to be implicitly deleted.
Fixes#137452
Since 346077aa, we began using the primary template's lexical
DeclContext for template arguments in order to properly instantiate a
friend definition.
There is a missed peculiar case, as in a friend template is specialized
within a dependent context. In this scenario, the primary template is
not a definition, whereas the specialization is. So the primary
template's DeclContext doesn't provide anything meaningful
for instantiation.
Fixes https://github.com/llvm/llvm-project/issues/139052
Allows the __ptrauth qualifier to be applied to pointer sized integer types,
updates Sema to ensure trivially copyable, etc correctly handle address
discriminated integers, and updates codegen to perform authentication
around arithmetic on the types.
This adds
- The parsing of `trivially_relocatable_if_eligible`,
`replaceable_if_eligible` keywords
- `__builtin_trivially_relocate`, implemented in terms of memmove. In
the future this should
- Add the appropriate start/end lifetime markers that llvm does not have
(`start_lifetime_as`)
- Add support for ptrauth when that's upstreamed
- the `__builtin_is_cpp_trivially_relocatable` and
`__builtin_is_replaceable` traits
Fixes#127609
This patch adds templated `operator<<` for diagnostics that pass scoped
enums, saving people from `llvm::to_underlying()` clutter on the side of
emitting the diagnostic. This eliminates 80 out of 220 usages of
`llvm::to_underlying()` in Clang.
I also backported `std::is_scoped_enum_v` from C++23.
Some of the old lock-based and new capability-based spellings behave
basically in the same way, so merging them simplifies the code
significantly.
There are two minor functional changes: we only warn (instead of an
error) when the try_acquire_capability attribute is used on something
else than a function. The alternative would have been to produce an
error for the old spelling, but we seem to only warn for all function
attributes, so this is arguably more consistent.
The second change is that we also check the first argument (which is the
value returned for a successful try-acquire) for `this`. But from what I
can tell, this code is defunct anyway at the moment (see #31414).
The qualifier allows programmer to directly control how pointers are
signed when they are stored in a particular variable.
The qualifier takes three arguments: the signing key, a flag specifying
whether address discrimination should be used, and a non-negative
integer that is used for additional discrimination.
```
typedef void (*my_callback)(const void*);
my_callback __ptrauth(ptrauth_key_process_dependent_code, 1, 0xe27a) callback;
```
Co-Authored-By: John McCall rjmccall@apple.com
Finding operator delete[] is still problematic, without it the extension
is a security hazard, so reverting until the problem with operator
delete[] is figured out.
This reverts the following PRs:
Reland [MS][clang] Add support for vector deleting destructors (llvm#133451)
[MS][clang] Make sure vector deleting dtor calls correct operator delete (llvm#133950)
[MS][clang] Fix crash on deletion of array of pointers (llvm#134088)
[clang] Do not diagnose unused deleted operator delete[] (llvm#134357)
[MS][clang] Error about ambiguous operator delete[] only when required (llvm#135041)
This is a basic implementation of P2719: "Type-aware allocation and
deallocation functions" described at http://wg21.link/P2719
The proposal includes some more details but the basic change in
functionality is the addition of support for an additional implicit
parameter in operators `new` and `delete` to act as a type tag. Tag is
of type `std::type_identity<T>` where T is the concrete type being
allocated. So for example, a custom type specific allocator for `int`
say can be provided by the declaration of
void *operator new(std::type_identity<int>, size_t, std::align_val_t);
void operator delete(std::type_identity<int>, void*, size_t, std::align_val_t);
However this becomes more powerful by specifying templated declarations,
for example
template <typename T> void *operator new(std::type_identity<T>, size_t, std::align_val_t);
template <typename T> void operator delete(std::type_identity<T>, void*, size_t, std::align_val_t););
Where the operators being resolved will be the concrete type being
operated over (NB. A completely unconstrained global definition as above
is not recommended as it triggers many problems similar to a general
override of the global operators).
These type aware operators can be declared as either free functions or
in class, and can be specified with or without the other implicit
parameters, with overload resolution performed according to the existing
standard parameter prioritisation, only with type parameterised
operators having higher precedence than non-type aware operators. The
only exception is destroying_delete which for reasons discussed in the
paper we do not support type-aware variants by default.
For vector deleting dtors support we now also search and save operator
delete[]. Avoid diagnosing deleted operator delete[] when doing that
because vector deleting dtors are only called when delete[] is present
and whenever delete[] is present in the TU it will be diagnosed
correctly.
Fixes https://github.com/llvm/llvm-project/issues/134265
This introduces a new class 'UnsignedOrNone', which models a lite
version of `std::optional<unsigned>`, but has the same size as
'unsigned'.
This replaces most uses of `std::optional<unsigned>`, and similar
schemes utilizing 'int' and '-1' as sentinel.
Besides the smaller size advantage, this is simpler to serialize, as its
internal representation is a single unsigned int as well.
We had a weird, incorrect, "ConstraintEvaluator" object that was not
useful for anything, so I removed that.
I also changed the CheckConstraintSatisfaction overload that just took
an Expr* as this did not make much sense at all.
Satisfaction checking is still fairly wrong,
we do not follow the standard that requires we only substitute into the
mapping of the normal form, so we produce errors for incorrect
substitution into concepts id, even though we should not.
During additional testing I spotted that vector deleting dtor calls
operator delete, not operator delete[] when performing array deletion.
This patch fixes that.
This is a follow-up to #132129.
Currently, only `Parser` and `SemaBase` get a `DiagCompat()` helper; I’m
planning to keep refactoring compatibility warnings and add more helpers
to other classes as needed. I also refactored a single parser compat
warning just to make sure everything works properly when diagnostics
across multiple components (i.e. Sema and Parser in this case) are
involved.
In `Sema::BuildStdInitializerList`, check that the synthesized
template-id `std::initializer_list<T>` is valid (which might not be the
case if the template has associated constraints or subsequent parameters
with default arguments) before forming the type.
Fixes#132256
DenseSet, SmallPtrSet, SmallSet, SetVector, and StringSet recently
gained C++23-style insert_range. This patch replaces:
Dest.insert(Src.begin(), Src.end());
with:
Dest.insert_range(Src);
This patch does not touch custom begin like succ_begin for now.
This introduces some tablegen helpers for defining compatibility
warnings. The main aim of this is to both simplify adding new
compatibility warnings as well as to unify the naming of compatibility
warnings.
I’ve refactored ~half of the compatiblity warnings (that follow the
usual scheme) in `DiagnosticSemaKinds.td` for illustration purposes and
also to simplify/unify the wording of some of them (I also corrected a
typo in one of them as a drive-by fix).
I haven’t (yet) migrated *all* warnings even in that one file, and there
are some more specialised ones for which the scheme I’ve established
here doesn’t work (e.g. because they’re warning+error instead of
warning+extwarn; however, warning+extension *is* supported), but the
point of this isn’t to implement *all* compatibility-related warnings
this way, only to make the common case a bit easier to handle.
This currently also only handles C++ compatibility warnings, but it
should be fairly straight-forward to extend the tablegen code so it can
also be used for C compatibility warnings (if this gets merged, I’m
planning to do that in a follow-up pr).
The vast majority of compatibility warnings are emitted by writing
```c++
Diag(Loc, getLangOpts().CPlusPlusYZ ? diag::ext_... : diag::warn_...)
```
in accordance with which I’ve chosen the following naming scheme:
```c++
Diag(Loc, getLangOpts().CPlusPlusYZ ? diag::compat_cxxyz_foo : diag::compat_pre_cxxyz_foo)
```
That is, for a warning about a C++20 feature—i.e. C++≤17
compatibility—we get:
```c++
Diag(Loc, getLangOpts().CPlusPlus20 ? diag::compat_cxx20_foo : diag::compat_pre_cxx20_foo)
```
While there is an argument to be made against writing ‘`compat_cxx20`’
here since is technically a case of ‘C++17 compatibility’ and not ‘C++20
compatibility’, I at least find this easier to reason about, because I
can just write the same number 3 times instead of having to use
`ext_cxx20_foo` but `warn_cxx17_foo`. Instead, I like to read this as a
warning about the ‘compatibility *of* a C++20 feature’ rather than
‘*with* C++17’.
I also experimented with moving all compatibility warnings to a separate
file, but 1. I don’t think it’s worth the effort, and 2. I think it
hurts compile times a bit because at least in my testing I felt that I
had to recompile more code than if we just keep e.g. Sema-specific
compat warnings in the Sema diagnostics file.
Instead, I’ve opted to put them all in the same place within any one
file; currently this is a the very top but I don’t really have strong
opinions about this.