The MCSymbolRefExpr::create overload with the specifier parameter is
discouraged and being phased out. Expressions with relocation specifiers
should use MCSpecifierExpr instead.
Record the number of function invocations from external code - code
outside the binary, which may include JIT code and DSOs. Accounting
external entry counts improves the fidelity of call graph flow
conservation analysis.
Test Plan: updated shrinkwrapping.test
When we call setIgnored() on functions that already have CFG built,
these functions are not going to get emitted and we risk missing
external function references being updated.
To mitigate the potential issues, run scanExternalRefs() on such
functions to create patches/relocations.
Since scanExternalRefs() relies on function relocations, we have to
preserve relocations until the function is emitted. As a result, the
memory overhead without debug info update could reach up to 2%.
We should never call fixBranches() on a function with invalid CFG. E.g.,
ValidateInternalCalls modifies CFG for its internal analysis purposes.
At the same time, it marks the function as non-simple with an assumption
that fixBranches() will never run on that function.
However, calculateEmittedSize() by default calls fixBranches() which can
lead to all sorts of issues, including assertions firing in
fixBranches().
The fix is to use the original size for non-simple functions in
calculateEmittedSize() since we are supposed to emit the function
unmodified. Additionally, add an assertion at the start of
fixBranches().
When conditional tail call is located in old code while BOLT is
operating in lite mode, the call will require optional pending
relocation with a type that is currently not supported resulting in a
build-time crash.
Before a proper fix is implemented, ignore conditional tail calls for
relocation purposes and mark their target functions to be patched, i.e.
to be served as veneers/thunks.
Sample is a general term covering both basic (IP) and branch (LBR)
profiles. Find and replace ambiguous uses of sample in a basic sample
sense.
Rename `RawBranchCount` into `RawSampleCount` reflecting its use for
both kinds of profile.
Rename `PF_LBR` profile type as `PF_BRANCH` reflecting non-LBR based
branch profiles (non-brstack SPE, synthesized brstack ETM/PT).
Follow-up to #137644.
Test Plan: NFC
On AArch64, we create optional/weak relocations that may not be
processed due to the relocated value overflow. When the overflow
happens, we used to enforce patching for all functions in the binary via
--force-patch option. This PR relaxes the requirement, and enforces
patching only for functions that are target of optional relocations.
Moreover, if the compact code model is used, the relocation overflow is
guaranteed not to happen and the patching will be skipped.
Some functions have their sizes as zero in input binary's symbol
table, like those compiled by assembler. When figuring out function
sizes, we may create label symbol if it doesn't point to any constant
island. However, before function size is known, marker symbol can
not be correctly associated to a function and therefore all such
checks would fail and we could end up adding a code label pointing
to constant island as secondary entry point and later mistakenly
marking the function as not simple.
Querying the global marker symbol array has big throughput overhead.
Instead we can run an extra check when post processing entry points
to identify such label symbols that actually point to constant islands.
When a pending relocation is created it is also marked whether it is
optional or not. It can be optional when such relocation is added as
part of an optimization (i.e., `scanExternalRefs`).
When bolt tries to `flushPendingRelocations`, it safely skips any
optional relocations that cannot be encoded due to being out of
range. A pre-requisite to that is the usage of the `-force-patch`
flag. Alternatrively, BOLT will bail out with a relevant message.
Background:
BOLT, as part of scanExternalRefs, identifies external references from
calls and creates some pending relocations for them. Those when
flushed will update references to point to the optimized functions.
This optimization can be disabled using `--no-scan`.
BOLT can assert if any of these pending relocations cannot be encoded.
This patch does not disable this optimization but instead selectively
applies it given that a pending relocation is optional and `-force-patch`
was enabled.
In lite mode, we only emit code for a subset of functions while
preserving the original code in .bolt.org.text. This requires updating
code references in non-emitted functions to ensure that:
* Non-optimized versions of the optimized code never execute.
* Function pointer comparison semantics is preserved.
On x86-64, we can update code references in-place using "pending
relocations" added in scanExternalRefs(). However, on AArch64, this is
not always possible due to address range limitations and linker address
"relaxation".
There are two types of code-to-code references: control transfer (e.g.,
calls and branches) and function pointer materialization.
AArch64-specific control transfer instructions are covered by #116964.
For function pointer materialization, simply changing the immediate
field of an instruction is not always sufficient. In some cases, we need
to modify a pair of instructions, such as undoing linker relaxation and
converting NOP+ADR into ADRP+ADD sequence.
To achieve this, we use the instruction patch mechanism instead of
pending relocations. Instruction patches are emitted via the regular MC
layer, just like regular functions. However, they have a fixed address
and do not have an associated symbol table entry. This allows us to make
more complex changes to the code, ensuring that function pointers are
correctly updated. Such mechanism should also be portable to RISC-V and
other architectures.
To summarize, for AArch64, we extend the scanExternalRefs() process to
undo linker relaxation and use instruction patches to partially
overwrite unoptimized code.
Instead of filtering and modifying relocations in readRelocations(),
preserve the relocation info and use it in the symbolizing disassembler.
This change mostly affects AArch64, where we need to look at original
linker relocations in order to properly symbolize instruction operands.
Add AArch64MCSymbolizer that symbolizes `MCInst` operands during
disassembly. The symbolization was previously done in
`BinaryFunction::disassemble()`, but it is also required by
`scanExternalRefs()` for "lite" mode functionality. Hence, similar to
x86, I've implemented the symbolizer interface that uses
`BinaryFunction` relocations to properly create instruction operands. I
expect the result of the disassembly to be identical after the change.
AArch64 disassembler was not calling `tryAddingSymbolicOperand()` for
`MOV` instructions. Fix that. Additionally, the disassembler marks `ldr`
instructions as branches by setting `IsBranch` parameter to true. Ignore
the parameter and rely on `MCPlusBuilder` interface instead.
I've modified `--check-encoding` flag to check symolization of operands
of instructions that have relocations against them.
In analyzeInstructionForFuncReference(), use MCPlusBuilder interface
while scanning symbolic operands of MCInst. Should be NFC on x86, but
will make the function work on other architectures. Note that it's
currently unused on non-x86 as its functionality is exclusive to safe
ICF that runs on x86 only.
BOLT used to mark multi-entry functions non-simple in non-relocation
mode with the reasoning that we can't move them due to potentially
undetected references. However, in aggregation mode it doesn't apply as
BOLT doesn't perform optimizations.
Relax this constraint in case of an aggregation job.
Test Plan: added entry-point-fallthru.s
Sometimes we need to know the size of a symbol besides its address, so
maybe we can start using the existing `BOLTLinker::lookupSymbolInfo()`
(that returns symbol address and size) and remove
`BOLTLinker::lookupSymbol()` (that only returns symbol address). And for
both we need to check return value as it is wrapped in `std::optional<>`,
which makes the difference even smaller.
When printing disassembly of a function with constant islands, include
the island info in the dump.
At the moment, only print islands in pre-CFG state. Include islands that
are interleaved with instructions.
When a function has an indirect branch with unknown control flow, we
preserve nops in order to keep all instruction offsets (from the start
of the function) the same in case the indirect branch is used by a
PC-relative jump table. However, when we know the control flow of the
function, we should be able to safely remove nops.
Identical Code Folding (ICF) folds functions that are identical into one
function, and updates symbol addresses to the new address. This reduces
the size of a binary, but can lead to problems. For example when
function pointers are compared. This can be done either explicitly in
the code or generated IR by optimization passes like Indirect Call
Promotion (ICP). After ICF what used to be two different addresses
become the same address. This can lead to a different code path being
taken.
This is where safe ICF comes in. Linker (LLD) does it using address
significant section generated by clang. If symbol is in it, or an object
doesn't have this section symbols are not folded.
BOLT does not have the information regarding which objects do not have
this section, so can't re-use this mechanism.
This implementation scans code section and conservatively marks
functions symbols as unsafe. It treats symbols as unsafe if they are
used in non-control flow instruction. It also scans through the data
relocation sections and does the same for relocations that reference a
function symbol. The latter handles the case when function pointer is
stored in a local or global variable, etc. If a relocation address
points within a vtable these symbols are skipped.
This change extracts the comparator for sorting functions by index into
a helper function `compareBinaryFunctionByIndex()`
Not sure why the comparator used in
`BinaryContext::getSortedFunctions()` is not same as the other two
places. I think they should use the same comparator, so I also change
`BinaryContext::getSortedFunctions()` to use
`compareBinaryFunctionByIndex()` for sorting functions.
These specify that the value of the given register in the previous frame
is the CFA plus some offset. This isn't very common but can be necessary
if the original value is normally reconstructed from the stack/frame
pointer instead of being saved on the stack and reloaded from there.
This patch fixes:
bolt/lib/Core/BinaryFunction.cpp:2537:13: error: enumeration value
'OpNegateRAStateWithPC' not handled in switch [-Werror,-Wswitch]
bolt/lib/Core/BinaryFunction.cpp:2661:13: error: enumeration value
'OpNegateRAStateWithPC' not handled in switch [-Werror,-Wswitch]
bolt/lib/Core/BinaryFunction.cpp:2805:13: error: enumeration value
'OpNegateRAStateWithPC' not handled in switch [-Werror,-Wswitch]
While printing functions, expand --print-only flag to accept section
names. E.g., "--print-only=\.init" will only print functions from
".init" section.
CFI programs may have more saves than restores and this is completely
benign from BOLT's perspective. Reduce the verbosity and print the
warning only under `-v=1` and above.
Detect and support fixed PIC indirect jumps of the following form:
```
movslq En(%rip), %r1
leaq PIC_JUMP_TABLE(%rip), %r2
addq %r2, %r1
jmpq *%r1
```
with PIC_JUMP_TABLE that looks like following:
```
JT: ----------
E1:| L1 - JT |
|----------|
E2:| L2 - JT |
|----------|
| |
......
En:| Ln - JT |
----------
```
The code could be produced by compilers, see
https://github.com/llvm/llvm-project/issues/91648.
Test Plan: updated jump-table-fixed-ref-pic.test
Reviewers: maksfb, ayermolo, dcci, rafaelauler
Reviewed By: rafaelauler
Pull Request: https://github.com/llvm/llvm-project/pull/91667
GNU assembler 2.26 introduced the .cfi_label directive. It does not
expand to any CFI instructions, but defines a label in
.eh_frame/.debug_frame, which can be used by runtime patching code to
locate the FDE. .cfi_label is not allowed for CIE's initial
instructions, and can therefore be used to force the next instruction to
be placed in a FDE instead of a CIE.
In glibc since 2018, sysdeps/riscv/start.S utilizes .cfi_label to force
DW_CFA_undefined to be placed in a FDE. arc/csky/loongarch ports have
copied this use.
```
.cfi_startproc
// DW_CFA_undefined is allowed for CIE's initial instructions.
// Without .cfi_label, gas would place DW_CFA_undefined in a CIE.
.cfi_label .Ldummy
.cfi_undefined ra
.cfi_endproc
```
No CFI instruction is associated with .cfi_label, so the `case
MCCFIInstruction::OpLabel:` code in BOLT is unreachable and onlt to make
-Wswitch happy.
Close#97222
Pull Request: https://github.com/llvm/llvm-project/pull/97922
9d0754ada5dbbc0c009bcc2f7824488419cc5530 dropped MC support required for
optimal macro-fusion alignment in BOLT. Remove the support in BOLT as
performance measurements with large binaries didn't show a significant
improvement.
Test Plan:
macro-fusion alignment was never upstreamed, so no upstream tests are
affected.
`isUnsupportedBranch` was renamed (and inverted) to `isReversibleBranch`, as that was how it was being used. But one use in `BinaryFunction::disassemble` was using the original meaning to detect unsupported branches, and the `isUnsupportedBranch` had 2 separate semantic checks.
Move the unsupported branch check from `isReversibleBranch` to a new entry point: `isUnsupportedInstruction`. Call that from `BinaryFunction::disassemble`.
Move the dynamic branch check from X86's isReversibleBranch to the base class, as it is not an architecture-specific check.
Remove unnecessary `isReversibleBranch` calls from Instrumentation and X86 MCPlusBuilder.
Alternative instruction sequences in the Linux kernel can modify the
stack and thus they need their own ORC unwind entries. Since there's
only one ORC table, it has to be "shared" among multiple instruction
sequences. The kernel achieves this by putting a restriction on
instruction boundaries. If ORC state changes at a given IP, only one of
the alternative sequences can have an instruction starting/ending at
this IP. Then, developers can insert NOPs to guarantee the above
requirement is met.
The most common use of ORC with alternatives is "pushf; pop %rax"
sequence used for paravirtualization. Note that newer kernel versions
no longer use .parainstructions; instead, they utilize alternatives for
the same purpose.
Before we implement a better support for alternatives, we can safely
skip ORC entries associated with them.
Fixes#87052.
Removed mutability from BB::LayoutIndex, subsequently removed const from
BB::SetLayout, and changed BF::dfs to track visited blocks with a set as
opposed to tracking and altering LayoutIndexes for more consistent code.
We compute BF hashes in `YAMLProfileReader::readProfile` when first
matching profile functions with binary functions, and second time in
`YAMLProfileReader::parseFunctionProfile` during the profile assignment
(we need to do that to account for LTO private functions with
mismatching suffix).
Avoid recomputing the hash if it's been set.
To align YAML and fdata profiles produced in BAT mode, lift two
restrictions applied in non-relocation mode when BAT is present:
1) register secondary entry points from ignored functions,
2) treat functions with secondary entry points as simple.
This allows constructing CFG for non-simple functions in non-relocation
mode and emitting YAML profile for them, which can then be used for
optimizations in relocation mode.
Test Plan: added test ignored-interprocedural-reference.s
`isUnsupportedBranch` is not a very informative name, and doesn't match
its corresponding `reverseBranchCondition`, as I noted in PR #92018.
Here's a renaming to a more mnemonic name.