This patch aims to clear up any confusion in documentation for the
fadd/fmul reduction creation APIs with regards to the sequential and
unordered variations without changing the APIs themselves.
The scalar accumulator value isn't only used for sequential reduction
intrinsics so the impliciation to the contrary was dropped. Then I
thought it useful to make clear that the API always creates a sequential
reduction. And lastly a note to users on how it is possible to transform
the resulting reduction into an unordered one.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D107753
C++20 no longer requires the failure memory ordering to be no stronger than the
success memory ordering. Adjust assert in AMD GPU SIMemoryLegalizer, and merge
instruction memory orderings
Add common operation to merge memory orders that allows non strict memory
orderings to be combined. Use it in SIMemoryLegalizer and
MachineMemOperand::getMergedOrdering.
Reviewed By: efriedma, rampitec
Differential Revision: https://reviews.llvm.org/D106729
Teach LV to use masked-store to support interleave-store-group with
gaps (instead of scatters/scalarization).
The symmetric case of using masked-load to support
interleaved-load-group with gaps was introduced a while ago, by
https://reviews.llvm.org/D53668; This patch completes the store-scenario
leftover from D53668, and solves PR50566.
Reviewed by: Ayal Zaks
Differential Revision: https://reviews.llvm.org/D104750
The MemorySSA-based implementation has been enabled for a few months
(since D94376). This patch drops the old MDA-based implementation
entirely.
I've kept this to only the basic cleanup of dropping various
conditions -- the code could be further cleaned up now that there
is only one implementation.
Differential Revision: https://reviews.llvm.org/D102113
1) add some self-diagnosis (when asserts are enabled) to check that all
features have the same nr of entries
2) avoid storing pointers to mutable fields because the proto API
contract doesn't actually guarantee those stay fixed even if no further
mutation of the object occurs.
Differential Revision: https://reviews.llvm.org/D107594
This is recommit of the patch 16ff91ebccda1128c43ff3cee104e2c603569fb2,
reverted in 0c28a7c990c5218d6aec47c5052a51cba686ec5e because it had
an error in call of getFastMathFlags (base type should be FPMathOperator
but not Instruction). The original commit message is duplicated below:
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
I just hit a nasty bug when writing a unit test after calling MF->getFrameInfo()
without declaring the variable as a reference.
Deleting the copy-constructor also showed a place in the ARM backend which was
doing the same thing, albeit it didn't impact correctness there from the looks of it.
Fixes issue where late materialized constants can be more strictly
aligned then their containing csect.
Differential Revision: https://reviews.llvm.org/D103103
In some cases, like with inserts, we may have a matching size register already,
but still decide to try to look further. This change adds a CurrentBest
register to the value finder state, and any time a method fails to make progress,
returns that register (which may just be an empty Register).
To facilitate this, add a new entry point to the findValueFromDef() function
which initializes this state.
Also fix the build vector finder to return the current build_vector if all
sources are being requested.
Differential Revision: https://reviews.llvm.org/D107017
When LLVM is used in other projects, it may happen that global cons-
tructors will execute before the call to ParseCommandLineOptions.
Since OptBisect is initialized via a constructor, and has no ability
to be updated at a later time, passing "-opt-bisect-limit" to the
parse function may have no effect.
To avoid this problem use a cl::cb (callback) to set the bisection
limit when the option is actually processed.
Differential Revision: https://reviews.llvm.org/D104551
It's entirely possible (because it actually happened) for a bool
variable to end up with a 256-bit DW_AT_const_value. This came about
when a local bool variable was initialized from a bitfield in a
32-byte struct of bitfields, and after inlining and constant
propagation, the variable did have a constant value. The sequence of
optimizations had it carrying "i256" values around, but once the
constant made it into the llvm.dbg.value, no further IR changes could
affect it.
Technically the llvm.dbg.value did have a DIExpression to reduce it
back down to 8 bits, but the compiler is in no way ready to emit an
oversized constant *and* a DWARF expression to manipulate it.
Depending on the circumstances, we had either just the very fat bool
value, or an expression with no starting value.
The sequence of optimizations that led to this state did seem pretty
reasonable, so the solution I came up with was to invent a DWARF
constant expression folder. Currently it only does convert ops, but
there's no reason it couldn't do other ops if that became useful.
This broke three tests that depended on having convert ops survive
into the DWARF, so I added an operator that would abort the folder to
each of those tests.
Differential Revision: https://reviews.llvm.org/D106915
D106861 added usage of PseudoProbeAttributes::Reserved as TailCall however this usage hasn't been committed/reviewed. Removing this usage.
Testing
ninja check-all
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D107514
to `lib/CodeGen/CommandFlags.cpp`. It can replace
-x86-experimental-pref-loop-alignment=.
The loop alignment is only used by MachineBlockPlacement.
The implementation uses a new `llvm::TargetOptions` for now, as
an IR function attribute/module flags metadata may be overkill.
This is the llvm part of D106701.
Rather than emitting the bias variable lazily as needed, emit it
eagerly. This allows profile runtime to refer to this variable
unconditionally without having to use the weak reference. The bias
variable is in a COMDAT so there'll never be more than one instance,
and if it's not needed, linker should be able to GC it, so the overhead
should be minimal.
Differential Revision: https://reviews.llvm.org/D107377
Migrate pseudo probe decoding logic in llvm-profgen to MC, so other LLVM-base program could reuse existing codes. Redesign object layout of encoded and decoded pseudo probes.
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D106861
This reverts commit 16ff91ebccda1128c43ff3cee104e2c603569fb2.
Several errors were reported mainly test-suite execution time. Reverted
for investigation.
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
- Rename `wasm.catch` intrinsic to `wasm.catch.exn`, because we are
planning to add a separate `wasm.catch.longjmp` intrinsic which
returns two values.
- Rename several variables
- Remove an unnecessary parameter from `canLongjmp` and `isEmAsmCall`
from LowerEmscriptenEHSjLj pass
- Add `-verify-machineinstrs` in a test for a safety measure
- Add more comments + fix some errors in comments
- Replace `std::vector` with `SmallVector` for cases likely with small
number of elements
- Renamed `EnableEH`/`EnableSjLj` to `EnableEmEH`/`EnableEmSjLj`: We are
soon going to add `EnableWasmSjLj`, so this makes the distincion
clearer
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D107405
Previously we would emit constant pool entries for ldr inline asm at the
very end of AsmPrinter::doFinalization(). However, if we're emitting
dwarf aranges, that would end all sections with aranges. Then if we have
constant pool entries to be emitted in those same sections, we'd hit an
assert that the section has already been ended.
We want to emit constant pool entries before emitting dwarf aranges.
This patch splits out arm32/64's constant pool entry emission into its
own MCTargetStreamer virtual method.
Fixes PR51208
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107314
I'm not sure this is the best way to approach this,
but the situation is rather not very detectable unless we explicitly call it out when refusing to advise to unroll.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107271
When we build with split dwarf in single mode the .o files that contain both "normal" debug sections and dwo sections, along with relocaiton sections for "normal" debug sections.
When we create DWARF context in DWARFObjInMemory we process relocations and store them in the map for .debug_info, etc section.
For DWO Context we also do it for non dwo dwarf sections. Which I believe is not necessary. This leads to a lot of memory being wasted. We observed 70GB extra memory being used.
I went with context sensitive approach, flag is passed in. I am not sure if it's always safe not to process relocations for regular debug sections if Obj contains .dwo sections.
If it is alternatvie might be just to scan, in constructor, sections and if there are .dwo sections not to process regular debug ones.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D106624
ArtifactValueFinder keeps trying to combine g_unmerge_values in some cases.
Fix is to skip combine attempt for dead defs.
Differential Revision: https://reviews.llvm.org/D106879
As discussed on D107228, widening a subvector by inserting the whole subvector into the bottom a larger undef vector should always be cheap enough that we can treat it as zero cost.
NOTE: If this proves to cause issues we have the option of introducing a "SK_WidenSubvector" shuffle kind enum that targets could override the zero cost, but that doesn't seem necessary atm.
Differential Revision: https://reviews.llvm.org/D107228
This patch adds an initial ShuffleVectorInst::isInsertSubvectorMask helper to recognize 2-op shuffles where the lowest elements of one of the sources are being inserted into the "in-place" other operand, this includes "concat_vectors" patterns as can be seen in the Arm shuffle cost changes. This also helped fix a x86 issue with irregular/length-changing SK_InsertSubvector costs - I'm hoping this will help with D107188
This doesn't currently attempt to work with 1-op shuffles that could either be a "widening" shuffle or a self-insertion.
The self-insertion case is tricky, but we currently always match this with the existing SK_PermuteSingleSrc logic.
The widening case will be addressed in a follow up patch that treats the cost as 0.
Masks with a high number of undef elts will still struggle to match optimal subvector widths - its currently bounded by minimum-width possible insertion, whilst some cases would benefit from wider (pow2?) subvectors.
Differential Revision: https://reviews.llvm.org/D107228
We might want to use info from GC strategy in middle end analysis.
The motivation for this is provided in D99135: we may want to ask
a GC if it's going to work with a given pointer (currently this code
makes naive check by the method name).
Differetial Revision: https://reviews.llvm.org/D100559
Reviewed By: reames
This patch legalizes the Machine Value Type introduced in D94096 for loads
and stores. A new target hook named getAsmOperandValueType() is added which
maps i512 to MVT::i64x8. GlobalISel falls back to DAG for legalization.
Differential Revision: https://reviews.llvm.org/D94097
Adds MVT::i64x8, a Machine Value Type needed for lowering inline assembly
operands which materialize a sequence of eight general purpose registers.
Differential Revision: https://reviews.llvm.org/D94096
This fixes support for merging profiles which broke as a consequence
of e50a38840dc3db5813f74b1cd2e10e6d984d0e67. The issue was missing
adjustment in merge logic to account for the binary IDs which are
now included in the raw profile just after header.
In addition, this change also:
* Includes the version in module signature that's used for merging
to avoid accidental attempts to merge incompatible profiles.
* Moves the binary IDs size field after version field in the header
as was suggested in the review.
Differential Revision: https://reviews.llvm.org/D107143