306 Commits

Author SHA1 Message Date
David Green
dd2dbf7ee2 [TTI] Change getOperandsScalarizationOverhead to take Type args
As a followup to D95291, getOperandsScalarizationOverhead was still
using a VF as a vector factor if the arguments were scalar, and would
assert on certain matrix intrinsics with differently sized vector
arguments. This patch removes the VF arg, instead passing the Types
through directly. This should allow it to more accurately compute the
cost without having to guess at which operands will be vectorized,
something difficult with more complex intrinsics.

This adjusts one SVE test as it is now calling the wrong intrinsic vs
veccall. Without invalid InstructCosts the cost of the scalarized
intrinsic is too low. This should get fixed when the cost of
scalarization is accounted for with scalable types.

Differential Revision: https://reviews.llvm.org/D96287
2021-02-23 13:04:59 +00:00
David Green
bd4b61efbd [CostModel] Remove VF from IntrinsicCostAttributes
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.

Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.

Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf36af5c88c working. ARM removed the fix in
dfac521da1b90db683, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.

Differential Revision: https://reviews.llvm.org/D95291
2021-02-23 13:03:26 +00:00
Kerry McLaughlin
ba1e150d03 [SVE] Add support for scalable vectorization of loops with int/fast FP reductions
This patch enables scalable vectorization of loops with integer/fast reductions, e.g:

```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
  sum += a[i];
}
```

A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.

Reviewed By: david-arm, fhahn, dmgreen

Differential Revision: https://reviews.llvm.org/D95245
2021-02-16 13:50:06 +00:00
Sjoerd Meijer
357237e93e Recommit "[TTI] Unify FavorPostInc and FavorBackedgeIndex into getPreferredAddressingMode"
This reverts commit effc3b079927a6dd3084b4ff712ec07f926366f0, with the build
problem fixed.
2021-02-15 11:33:00 +00:00
Sjoerd Meijer
effc3b0799 Revert "[TTI] Unify FavorPostInc and FavorBackedgeIndex into getPreferredAddressingMode"
This reverts commit cd6de0e8de4a5fd558580be4b1a07116914fc8ed.
2021-02-15 11:01:23 +00:00
Sjoerd Meijer
cd6de0e8de [TTI] Unify FavorPostInc and FavorBackedgeIndex into getPreferredAddressingMode
This refactors shouldFavorPostInc() and shouldFavorBackedgeIndex() into
getPreferredAddressingMode() so that we have one interface to steer LSR in
generating the preferred addressing mode.

Differential Revision: https://reviews.llvm.org/D96600
2021-02-15 10:44:15 +00:00
Kerry McLaughlin
fea06efe7c [SVE][LoopVectorize] Support for vectorization of loops with function calls
Changes `getScalarizationOverhead` to return an invalid cost for scalable VFs
and adds some simple tests for loops containing a function for which
there is a vectorized variant available.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D96356
2021-02-12 13:47:43 +00:00
Sanjay Patel
79b1b4a581 [Vectorizers][TTI] remove option to bypass creation of vector reduction intrinsics
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247

So I think it is safe to now remove this complication from IR.

Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.

I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.

If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.

Differential Revision: https://reviews.llvm.org/D96552
2021-02-12 08:13:50 -05:00
Sander de Smalen
703130fb01 [TTI] Change TargetTransformInfo::getMinimumVF to return ElementCount
This will be needed in the loop-vectorizer where the minimum VF
requested may be a scalable VF. getMinimumVF now takes an additional
operand 'IsScalableVF' that indicates whether a scalable VF is required.

Reviewed By: kparzysz, rampitec

Differential Revision: https://reviews.llvm.org/D96020
2021-02-11 09:08:48 +00:00
Jinsong Ji
9202806241 Revert "[CostModel] Remove VF from IntrinsicCostAttributes"
This reverts commit 502a67dd7f23901834e05071ab253889f671b5d9.

This expose a failure in test-suite build on PowerPC,
revert to unblock buildbot first,
Dave will re-commit in https://reviews.llvm.org/D96287.

Thanks Dave.
2021-02-09 02:14:14 +00:00
David Green
502a67dd7f [CostModel] Remove VF from IntrinsicCostAttributes
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.

Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.

Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf36af5c88c working. ARM removed the fix in
dfac521da1b90db683, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.

Differential Revision: https://reviews.llvm.org/D95291
2021-02-05 09:34:24 +00:00
Craig Topper
11ef356d9e [TargetLowering] Use Align in allowsMisalignedMemoryAccesses.
Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D96097
2021-02-04 19:22:06 -08:00
Arthur Eubanks
a11bf9a7fb [AMDGPU][Inliner] Remove amdgpu-inline and add a new TTI inline hook
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.

amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
   some limit
2) It increases the threshold if there are pointers to private arrays(?)

These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.

This way we can remove the custom amdgpu-inline pass.

This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.

Reviewed By: rampitec

Differential Revision: https://reviews.llvm.org/D94153
2021-01-21 20:29:17 -08:00
David Green
39db5753f9 [LV][ARM] Inloop reduction cost modelling
This adds cost modelling for the inloop vectorization added in
745bf6cf4471. Up until now they have been modelled as the original
underlying instruction, usually an add. This happens to works OK for MVE
with instructions that are reducing into the same type as they are
working on. But MVE's instructions can perform the equivalent of an
extended MLA as a single instruction:

  %sa = sext <16 x i8> A to <16 x i32>
  %sb = sext <16 x i8> B to <16 x i32>
  %m = mul <16 x i32> %sa, %sb
  %r = vecreduce.add(%m)
  ->
  R = VMLADAV A, B

There are other instructions for performing add reductions of
v4i32/v8i16/v16i8 into i32 (VADDV), for doing the same with v4i32->i64
(VADDLV) and for performing a v4i32/v8i16 MLA into an i64 (VMLALDAV).
The i64 are particularly interesting as there are no native i64 add/mul
instructions, leading to the i64 add and mul naturally getting very
high costs.

Also worth mentioning, under NEON there is the concept of a sdot/udot
instruction which performs a partial reduction from a v16i8 to a v4i32.
They extend and mul/sum the first four elements from the inputs into the
first element of the output, repeating for each of the four output
lanes. They could possibly be represented in the same way as above in
llvm, so long as a vecreduce.add could perform a partial reduction. The
vectorizer would then produce a combination of in and outer loop
reductions to efficiently use the sdot and udot instructions. Although
this patch does not do that yet, it does suggest that separating the
input reduction type from the produced result type is a useful concept
to model. It also shows that a MLA reduction as a single instruction is
fairly common.

This patch attempt to improve the costmodelling of in-loop reductions
by:
 - Adding some pattern matching in the loop vectorizer cost model to
   match extended reduction patterns that are optionally extended and/or
   MLA patterns. This marks the cost of the reduction instruction correctly
   and the sext/zext/mul leading up to it as free, which is otherwise
   difficult to tell and may get a very high cost. (In the long run this
   can hopefully be replaced by vplan producing a single node and costing
   it correctly, but that is not yet something that vplan can do).
 - getExtendedAddReductionCost is added to query the cost of these
   extended reduction patterns.
 - Expanded the ARM costs to account for these expanded sizes, which is a
   fairly simple change in itself.
 - Some minor alterations to allow inloop reduction larger than the highest
   vector width and i64 MVE reductions.
 - An extra InLoopReductionImmediateChains map was added to the vectorizer
   for it to efficiently detect which instructions are reductions in the
   cost model.
 - The tests have some updates to show what I believe is optimal
   vectorization and where we are now.

Put together this can greatly improve performance for reduction loop
under MVE.

Differential Revision: https://reviews.llvm.org/D93476
2021-01-21 21:03:41 +00:00
Caroline Concatto
060cfd9795 [AArch64][SVE]Add cost model for masked gather and scatter for scalable vector.
A new TTI interface has been added 'Optional <unsigned>getMaxVScale' that
    returns the maximum vscale for a given target.
    When known getMaxVScale is used to compute the cost of masked gather scatter
    for scalable vector.

    Depends on D92094

    Differential Revision: https://reviews.llvm.org/D93030
2021-01-04 13:59:58 +00:00
Cullen Rhodes
7c8796f9db [TTI] Add supportsScalableVectors target hook
This is split off from D91718 and adds a new target hook
supportsScalableVectors that can be queried to check if scalable vectors
are supported by the backend. For AArch64 this returns true if SVE is
enabled.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D93060
2020-12-18 10:37:01 +00:00
Stanislav Mekhanoshin
87d7757bbe [SLP] Control maximum vectorization factor from TTI
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.

This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.

However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.

The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.

Differential Revision: https://reviews.llvm.org/D92059
2020-12-14 08:49:40 -08:00
Caroline Concatto
4b0ef2b075 [NFC][CostModel]Extend class IntrinsicCostAttributes to use ElementCount Type
This patch replaces the attribute  `unsigned VF`  in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.

Differential Revision: https://reviews.llvm.org/D91532
2020-12-01 11:12:51 +00:00
Janek van Oirschot
42eaf4fe0a [HardwareLoops] Change order of SCEV expression construction for InitLoopCount.
Putting the +1 before the zero-extend will allow scalar evolution to fold the expression in some cases such as the one shown in PowerPC's `shrink-wrap.ll` test.

Reviewed By: samparker

Differential Revision: https://reviews.llvm.org/D91724
2020-11-24 18:01:42 +00:00
Sander de Smalen
f571fe6df5 Reland [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This relands https://reviews.llvm.org/D91059 and reverts commit
30fded75b48bcbc034120154a57a00c7f3d07e06.

GetRegUsage now returns 0 when Ty is not a valid vector element type.
2020-11-17 13:45:10 +00:00
Michael Liao
f375885ab8 [InferAddrSpace] Teach to handle assumed address space.
- In certain cases, a generic pointer could be assumed as a pointer to
  the global memory space or other spaces. With a dedicated target hook
  to query that address space from a given value, infer-address-space
  pass could infer and propagate that to all its users.

Differential Revision: https://reviews.llvm.org/D91121
2020-11-16 17:06:33 -05:00
Sander de Smalen
30fded75b4 Revert "[LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost."
This reverts commits:
* [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
  b873aba3943c067a5efd5303cbdf5aeb0732cf88.
* [LoopVectorizer] Silence warning in GetRegUsage.
  9ff701100a868b7b680aac5c54e9db21a55531fd.
2020-11-11 14:41:55 +00:00
Sander de Smalen
b873aba394 [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This is more accurate than dividing the bitwidth based on the element count by the
maximum register size, as it can just reuse whatever has been calculated for
legalization of these types.

This change is also necessary when calculating register usage for scalable vectors, where
the legalization of these types cannot be done based on the widest register size, because
that does not take the 'vscale' component into account.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D91059
2020-11-11 10:18:50 +00:00
Florian Hahn
b3b993a7ad Reland "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts the revert commit 408c4408facc3a79ee4ff7e9983cc972f797e176.

This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.

Original message:

On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
2020-11-02 15:39:29 +00:00
Florian Hahn
408c4408fa Revert "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts commit 73f01e3df58dca9d1596440b866b52929e3878de.

This appears to break
http://lab.llvm.org:8011/#/builders/85/builds/383.
2020-10-30 21:26:14 +00:00
Florian Hahn
73f01e3df5 [TTI] Add VecPred argument to getCmpSelInstrCost.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.

Reviewed By: dmgreen, RKSimon

Differential Revision: https://reviews.llvm.org/D90070
2020-10-30 13:49:08 +00:00
Chen Zheng
00e573cadb [LSR] fix typo in comments and rename for a new added hook. 2020-10-26 22:29:22 -04:00
Chen Zheng
1e0b6c1df0 [LSR] ignore profitable chain when reg num is not major cost.
Reviewed By: samparker

Differential Revision: https://reviews.llvm.org/D89665
2020-10-23 09:35:48 -04:00
Sanjay Patel
33125cffda [CostModel] fill in arguments as part of intrinsic attribute constructor
This appears to be an error of code duplication - instead of
one constructor variant calling another, we have N similar
but not identical versions.

I think this is 'NFC' based on the current callers, but it's
hard to tell or guess the intent in all cases.
2020-09-28 15:27:45 -04:00
Sanjay Patel
6189a8d9f5 [TTI] add wrapper for matching vector reduction to reduce code duplication; NFC
I'm not sure what this means, but the order in which we try
the matches makes a difference on at least 1 regression test...
2020-09-23 13:48:57 -04:00
Meera Nakrani
a3d0dce260 [ARM][TTI] Prevents constants in a min(max) or max(min) pattern from being hoisted when in a loop
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.

Differential Revision: https://reviews.llvm.org/D87457
2020-09-22 11:54:10 +00:00
David Green
74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
David Green
2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green
60280e9818 [Analysis] TTI: Add CastContextHint for getCastInstrCost
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types.  Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization.  Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.

For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.

To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.

Original patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79162
2020-07-29 13:32:53 +01:00
Christopher Tetreault
23c5e59d9f [SVE] Remove calls to VectorType::getNumElements from Analysis
Reviewers: efriedma, fpetrogalli, c-rhodes, asbirlea, RKSimon

Reviewed By: RKSimon

Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81504
2020-07-22 15:19:05 -07:00
Sebastian Neubauer
2a6c871596 [InstCombine] Move target-specific inst combining
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.

D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).

This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic

A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.

This allows to move about 3000 lines out from InstCombine to the targets.

Differential Revision: https://reviews.llvm.org/D81728
2020-07-22 15:59:49 +02:00
Sidharth Baveja
e541e1b757 [NFC] Separate Peeling Properties into its own struct (re-land after minor fix)
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.

Author: sidbav (Sidharth Baveja)

Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)

Reviewed By: Meinersbur (Michael Kruse)

Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80580
2020-07-10 18:39:30 +00:00
Nikita Popov
0b39d2d752 Revert "[NFC] Separate Peeling Properties into its own struct"
This reverts commit 0369dc98f958a1ca2ec05f1897f091129bb16e8a.

Many failing tests.
2020-07-08 21:43:32 +02:00
Sidharth Baveja
0369dc98f9 [NFC] Separate Peeling Properties into its own struct
Summary:
This patch makes the peeling properties of the loop accessible by other loop transformations.

Author: sidbav (Sidharth Baveja)

Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel)

Reviewed By: Meinersbur (Michael Kruse)

Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80580
2020-07-08 18:59:59 +00:00
Anh Tuyen Tran
6965af43e6 Revert "[NFC] Separate Peeling Properties into its own struct"
This reverts commit fead250b439bbd4ec0f21e6a52d0c174e5fcdf5a.
2020-07-08 18:58:05 +00:00
Anh Tuyen Tran
fead250b43 [NFC] Separate Peeling Properties into its own struct
Summary:
This patch makes the peeling properties of the loop accessible by other loop transformations.

Author: sidbav (Sidharth Baveja)

Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel)

Reviewed By: Meinersbur (Michael Kruse)

Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM

Tag: LLVM

Differential Revision: https://reviews.llvm.org/D80580
2020-07-08 18:56:03 +00:00
Sam Parker
0724153bbe [CostModel] Fix cast crash
Don't presume instruction operands while matching reductions.

Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=46430

Differential Revision: https://reviews.llvm.org/D82453
2020-07-03 07:53:45 +01:00
Guillaume Chatelet
1507fc1506 [Alignment][NFC] Migrate TTI::isLegalToVectorize{Load,Store}Chain to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82653
2020-06-26 14:14:27 +00:00
Guillaume Chatelet
b66e33a689 [Alignment][NFC] Migrate TTI::getGatherScatterOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82577
2020-06-26 11:08:27 +00:00
Guillaume Chatelet
fdc7c7fb87 [Alignment][NFC] Migrate TTI::getInterleavedMemoryOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82573
2020-06-26 11:00:53 +00:00
Guillaume Chatelet
7e1f79c3de [Alignment][NFC] Migrate TTI::getMaskedMemoryOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82569
2020-06-26 10:14:16 +00:00
dfukalov
7ddee0922f [NFCI][CostModel] Add const to Value*.
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.

Reviewers: samparker

Reviewed By: samparker

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82383
2020-06-24 23:16:08 +03:00
Michael Liao
2defe55722 [TTI] Expose isNoopAddrSpaceCast in TTI.
Reviewers: arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82025
2020-06-18 14:40:47 -04:00
Sjoerd Meijer
20835cff27 [TTI] Refactor emitGetActiveLaneMask
Refactor TTI hook emitGetActiveLaneMask and remove the unused arguments
as suggested in D79100.
2020-06-17 09:53:58 +01:00
Sam Parker
7158f285a8 [CostModel] Unify getCFInstrCost
Have TTI::getInstructionThroughput call getUserCost for Br, Ret and
PHI. This now means that eveything in getInstructionThroughput is
handled by getUserCost.

Differential Revision: https://reviews.llvm.org/D79849
2020-06-16 08:40:54 +01:00