Currently, for AMDGPU, when compiling for OpenCL, we unconditionally use
`private` as the default address space. This is wrong for cases where
the `generic` address space is available, and is corrected via this
patch. In general, this AS map abuse is a bad hack and we should re-work
it altogether, but at least after this patch we will stop being
incorrect for e.g. OpenCL 2.0.
This patch is the frontend implementation of the coroutine elide
improvement project detailed in this discourse post:
https://discourse.llvm.org/t/language-extension-for-better-more-deterministic-halo-for-c-coroutines/80044
This patch proposes a C++ struct/class attribute
`[[clang::coro_await_elidable]]`. This notion of await elidable task
gives developers and library authors a certainty that coroutine heap
elision happens in a predictable way.
Originally, after we lower a coroutine to LLVM IR, CoroElide is
responsible for analysis of whether an elision can happen. Take this as
an example:
```
Task foo();
Task bar() {
co_await foo();
}
```
For CoroElide to happen, the ramp function of `foo` must be inlined into
`bar`. This inlining happens after `foo` has been split but `bar` is
usually still a presplit coroutine. If `foo` is indeed a coroutine, the
inlined `coro.id` intrinsics of `foo` is visible within `bar`. CoroElide
then runs an analysis to figure out whether the SSA value of
`coro.begin()` of `foo` gets destroyed before `bar` terminates.
`Task` types are rarely simple enough for the destroy logic of the task
to reference the SSA value from `coro.begin()` directly. Hence, the pass
is very ineffective for even the most trivial C++ Task types. Improving
CoroElide by implementing more powerful analyses is possible, however it
doesn't give us the predictability when we expect elision to happen.
The approach we want to take with this language extension generally
originates from the philosophy that library implementations of `Task`
types has the control over the structured concurrency guarantees we
demand for elision to happen. That is, the lifetime for the callee's
frame is shorter to that of the caller.
The ``[[clang::coro_await_elidable]]`` is a class attribute which can be
applied to a coroutine return type.
When a coroutine function that returns such a type calls another
coroutine function, the compiler performs heap allocation elision when
the following conditions are all met:
- callee coroutine function returns a type that is annotated with
``[[clang::coro_await_elidable]]``.
- In caller coroutine, the return value of the callee is a prvalue that
is immediately `co_await`ed.
From the C++ perspective, it makes sense because we can ensure the
lifetime of elided callee cannot exceed that of the caller if we can
guarantee that the caller coroutine is never destroyed earlier than the
callee coroutine. This is not generally true for any C++ programs.
However, the library that implements `Task` types and executors may
provide this guarantee to the compiler, providing the user with
certainty that HALO will work on their programs.
After this patch, when compiling coroutines that return a type with such
attribute, the frontend checks that the type of the operand of
`co_await` expressions (not `operator co_await`). If it's also
attributed with `[[clang::coro_await_elidable]]`, the FE emits metadata
on the call or invoke instruction as a hint for a later middle end pass
to elide the elision.
The original patch version is
https://github.com/llvm/llvm-project/pull/94693 and as suggested, the
patch is split into frontend and middle end solutions into stacked PRs.
The middle end CoroSplit patch can be found at
https://github.com/llvm/llvm-project/pull/99283
The middle end transformation that performs the elide can be found at
https://github.com/llvm/llvm-project/pull/99285
Uses the new InsertPosition class (added in #94226) to simplify some of
the IRBuilder interface, and removes the need to pass a BasicBlock
alongside a BasicBlock::iterator, using the fact that we can now get the
parent basic block from the iterator even if it points to the sentinel.
This patch removes the BasicBlock argument from each constructor or call
to setInsertPoint.
This has no functional effect, but later on as we look to remove the
`Instruction *InsertBefore` argument from instruction-creation
(discussed
[here](https://discourse.llvm.org/t/psa-instruction-constructors-changing-to-iterator-only-insertion/77845)),
this will simplify the process by allowing us to deprecate the
InsertPosition constructor directly and catch all the cases where we use
instructions rather than iterators.
This is in effect a revert of f139ae3d93797, as we have since gained a
more sophisticated way of doing extra IRGen with the addition of
RawAddress in #86923.
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies d9a685a9dd589486e882b722e513ee7b8c84870c, which was
reverted because it broke ubsan bots. There seems to be a bug in
coroutine code-gen, which is causing EmitTypeCheck to use the wrong
alignment. For now, pass alignment zero to EmitTypeCheck so that it can
compute the correct alignment based on the passed type (see function
EmitCXXMemberOrOperatorMemberCallExpr).
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies 8bd1f9116aab879183f34707e6d21c7051d083b6. The commit
broke msan bots because LValue::IsKnownNonNull was uninitialized.
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This patch fixes problems that pop up when clang emits DbgRecords
instead of debug intrinsics.
Note: this doesn't mean clang is emitting DbgRecords yet, because the
modules it creates are still always in the old debug mode. That will
come in a future patch.
Depends on #84739
This patch fixes problems that pop up when clang emits DbgRecords
instead of debug intrinsics.
Note: this doesn't mean clang is emitting DbgRecords yet, because the
modules it creates are still always in the old debug mode. That will
come in a future patch.
Depends on #84739
This patch converts `ImplicitParamDecl::ImplicitParamKind` into a scoped enum at namespace scope, making it eligible for forward declaring. This is useful for `preferred_type` annotations on bit-fields.
Hashing the sugared type instead of the canonical type meant that
a simple example like this would always fail under MSVC:
```
static auto l() {}
int main() {
auto a = l;
a();
}
```
`clang --target=x86_64-pc-windows-msvc -fno-exceptions
-fsanitize=function -g -O0 -fuse-ld=lld -o test.exe test.cc`
produces:
```
test.cc:4:3: runtime error: call to function l through pointer to incorrect function type 'void (*)()'
```
- Update CodeGenTypeCache to use a single union for all pointers in
address space zero.
- Introduce a UnqualPtrTy in CodeGenTypeCache, and use that (for
example instead of llvm::PointerType::getUnqual) in some places.
- Drop some redundant bit/pointers casts from ptr to ptr.
The last use was removed by:
commit e5df9cc098b554ebb066792e40cbde6feddc57bc
Author: Akira Hatanaka <ahatanaka@apple.com>
Date: Sat Jan 8 13:27:28 2022 -0800
* Add `Address::withElementType()` as a replacement for
`CGBuilderTy::CreateElementBitCast`.
* Partial progress towards replacing `CreateElementBitCast`, as it no
longer does what its name suggests. Either replace its uses with
`Address::withElementType()`, or remove them if no longer needed.
* Remove unused parameter 'Name' of `CreateElementBitCast`
Reviewed By: barannikov88, nikic
Differential Revision: https://reviews.llvm.org/D153196
Partial progress towards replacing in-tree uses of `Type::getPointerTo()`.
This needs to be done before deprecating the API.
Reviewed By: nikic, barannikov88
Differential Revision: https://reviews.llvm.org/D152321
Mixing LLVM and Clang address spaces can result in subtle bugs, and there
is no need for this hook to use the LLVM IR level address spaces.
Most of this change is just replacing zero with LangAS::Default,
but it also allows us to remove a few calls to getTargetAddressSpace().
This also removes a stale comment+workaround in
CGDebugInfo::CreatePointerLikeType(): ASTContext::getTypeSize() does
return the expected size for ReferenceType (and handles address spaces).
Differential Revision: https://reviews.llvm.org/D138295
To make uses of the deprecated constructor easier to spot, and to
ensure that no new uses are introduced, rename it to
Address::deprecated().
While doing the rename, I've filled in element types in cases
where it was relatively obvious, but we're still left with 135
calls to the deprecated constructor.
when generating copy/dispose helper functions
Analyze the block captures just once before generating copy/dispose
block helper functions and honor the inert `__unsafe_unretained`
qualifier. This refactor fixes a bug where captures of ObjC
`__unsafe_unretained` and class types were needlessly retained/released
by the copy/dispose helper functions.
Differential Revision: https://reviews.llvm.org/D116948
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Pass a LangAS instead of a target address space to
GetOrCreateLLVMGlobal, to remove a place where the frontend assumes that
target address space 0 is special.
Differential Revision: https://reviews.llvm.org/D108445