When generating XCOFF, the compiler generates a csect with an internal
name. Each function results in a label within the csect. This patch
replaces the internal name ".text" with an empty string "". This avoids
adding special code to handle a function text() in the source file, and
works better with some XCOFF tools that are confused when the csect and
the first function have the same address.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D154854
This patch adds support for the ADA (associated data area), doing the following:
-Creates the ADA table to handle displacements
-Emits the ADA section in the SystemZAsmPrinter
-Lowers the ADA_ENTRY node into the appropriate load instruction
Differential Revision: https://reviews.llvm.org/D153788
- Creates the ADA table to handle displacements
- Emits the ADA section in the SystemZAsmPrinter
- Lowers the ADA_ENTRY node into the appropriate load instruction
Differential Revision: https://reviews.llvm.org/D153788
When emitting a debug_frame section, it contains a named symbol.
> echo "void foo(void) {}" | clang -arch arm64 -ffreestanding -g -c -o \
/tmp/test.o -x c -
> nm /tmp/test.o -s __DWARF __debug_frame
0000000000000200 s ltmp1
There are no such symbols emitted in any of the other DWARF sections,
this is because when the __debug_frame section is created, it doesn't
get a `BeginSymName` and so it creates a named symbol, such as `ltmp1`
and emits it when we switch to the section in MCDwarf.cpp.
This patch fixes the above issue.
Differential Revision: https://reviews.llvm.org/D153484
When emitting a debug_frame section, it contains a named symbol.
> echo "void foo(void) {}" | clang -arch arm64 -ffreestanding -g -c -o \
/tmp/test.o -x c -
> nm /tmp/test.o -s __DWARF __debug_frame
0000000000000200 s ltmp1
There are no such symbols emitted in any of the other DWARF sections,
this is because when the __debug_frame section is created, it doesn't
get a `BeginSymName` and so it creates a named symbol, such as `ltmp1`
and emits it when we switch to the section in MCDwarf.cpp.
This patch fixes the above issue.
Differential Revision: https://reviews.llvm.org/D153484
* Add the SHF_LINK_ORDER flag so that the .pseudo_probe section is discarded when the associated text section is discarded.
* Add unique ID so that with `clang -ffunction-sections -fno-unique-section-names`, there is one separate .pseudo_probe for each text section (disambiguated by `.section ....,unique,id` in assembly)
The changes allow .pseudo_probe GC even if we don't place instrumented functions
in an IR comdat (see `getOrCreateFunctionComdat` in SampleProfileProbe.cpp).
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D153189
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
With https://reviews.llvm.org/D136627, now we have the metrics for profile staleness based on profile statistics, monitoring the profile staleness in real-time can help user quickly identify performance issues. For a production scenario, the build is usually incremental and if we want the real-time metrics, we should store/cache all the old object's metrics somewhere and pull them in a post-build time. To make it more convenient, this patch add an option to persist them into the object binary, the metrics can be reported right away by decoding the binary rather than polling the previous stdout/stderrs from a cache system.
For implementation, it writes the statistics first into a new metadata section(llvm.stats) then encode into a special ELF `.llvm_stats` section. The section data is formatted as a list of key/value pair so that future statistics can be easily extended. This is also under a new switch(`-persist-profile-staleness`)
In terms of size overhead, the metrics are computed at module level, so the size overhead should be small, measured on one of our internal service, it costs less than < 1MB for a 10GB+ binary.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D136698
Currently pseudo probe encoding for a function is like:
- For the first probe, a relocation from it to its physical position in the code body
- For subsequent probes, an incremental offset from the current probe to the previous probe
The relocation could potentially cause relocation overflow during link time. I'm now replacing it with an offset from the first probe to the function start address.
A source function could be lowered into multiple binary functions due to outlining (e.g, coro-split). Since those binary function have independent link-time layout, to really avoid relocations from .pseudo_probe sections to .text sections, the offset to replace with should really be the offset from the probe's enclosing binary function, rather than from the entry of the source function. This requires some changes to previous section-based emission scheme which now switches to be function-based. The assembly form of pseudo probe directive is also changed correspondingly, i.e, reflecting the binary function name.
Most of the source functions end up with only one binary function. For those don't, a sentinel probe is emitted for each of the binary functions with a different name from the source. The sentinel probe indicates the binary function name to differentiate subsequent probes from the ones from a different binary function. For examples, given source function
```
Foo() {
…
Probe 1
…
Probe 2
}
```
If it is transformed into two binary functions:
```
Foo:
…
Foo.outlined:
…
```
The encoding for the two binary functions will be separate:
```
GUID of Foo
Probe 1
GUID of Foo
Sentinel probe of Foo.outlined
Probe 2
```
Then probe1 will be decoded against binary `Foo`'s address, and Probe 2 will be decoded against `Foo.outlined`. The sentinel probe of `Foo.outlined` makes sure there's not accidental relocation from `Foo.outlined`'s probes to `Foo`'s entry address.
On the BOLT side, to be minimal intrusive, the pseudo probe re-encoding sticks with the old encoding format. This is fine since unlike linker, Bolt processes the pseudo probe section as a whole and it is free from relocation overflow issues.
The change is downwards compatible as long as there's no mixed use of the old encoding and the new encoding.
Reviewed By: wenlei, maksfb
Differential Revision: https://reviews.llvm.org/D135912
Differential Revision: https://reviews.llvm.org/D135914
Differential Revision: https://reviews.llvm.org/D136394
Interpret MD_pcsections in AsmPrinter emitting the requested metadata to
the associated sections. Functions and normal instructions are handled.
Differential Revision: https://reviews.llvm.org/D130879
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c95494ff05be2a613129110c9bcf17f6c13 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
DXContainer files resemble traditional object files in that they are
comprised of parts which resemble sections. Adding DXContainer as an
object file format in the MC layer will allow emitting DXContainer
objects through the normal object emission pipeline.
Differential Revision: https://reviews.llvm.org/D127165
Previously, omitting unnecessary DWARF unwinds was only done in two
cases:
* For Darwin + aarch64, if no DWARF unwind info is needed for all the
functions in a TU, then the `__eh_frame` section would be omitted
entirely. If any one function needed DWARF unwind, then MC would emit
DWARF unwind entries for all the functions in the TU.
* For watchOS, MC would omit DWARF unwind on a per-function basis, as
long as compact unwind was available for that function.
This diff makes it so that we omit DWARF unwind on a per-function basis
for Darwin + aarch64 as well. In addition, we introduce the flag
`--emit-dwarf-unwind=` which can toggle between `always`,
`no-compact-unwind` (only emit DWARF when CU cannot be emitted for a
given function), and the target platform `default`. `no-compact-unwind`
is particularly useful for newer x86_64 platforms: we don't want to omit
DWARF unwind for x86_64 in general due to possible backwards compat
issues, but we should make it possible for people to opt into this
behavior if they are only targeting newer platforms.
**Motivation:** I'm working on adding support for `__eh_frame` to LLD,
but I'm concerned that we would suffer a perf hit. Processing compact
unwind is already expensive, and that's a simpler format than EH frames.
Given that MC currently produces one EH frame entry for every compact
unwind entry, I don't think processing them will be cheap. I tried to do
something clever on LLD's end to drop the unnecessary EH frames at parse
time, but this made the code significantly more complex. So I'm looking
at fixing this at the MC level instead.
**Addendum:** It turns out that there was a latent bug in the X86
backend when `OmitDwarfIfHaveCompactUnwind` is naively enabled, which is
not too surprising given that this combination has not been heretofore
used.
For functions that have unwind info that cannot be encoded with CU, MC
would end up dropping both the compact unwind entry (OK; existing
behavior) as well as the DWARF entries (not OK). This diff fixes things
so that we emit the DWARF entry, as well as a CU entry with encoding
`UNWIND_X86_MODE_DWARF` -- this basically tells the unwinder to look for
the DWARF entry. I'm not 100% sure the `UNWIND_X86_MODE_DWARF` CU entry
is necessary, this was the simplest fix. ld64 seems to be able to handle
both the absence and presence of this CU entry. Ultimately ld64 (and
LLD) will synthesize `UNWIND_X86_MODE_DWARF` if it is absent, so there
is no impact to the final binary size.
Reviewed By: davide, lhames
Differential Revision: https://reviews.llvm.org/D122258
The __llvm_addrsig section is a section that the linker needs for safe icf.
This was not yet implemented for MachO - this is the implementation.
It has been tested with a safe deduplication implementation inside lld.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D123751
The patch adds SPIRV-specific MC layer implementation, SPIRV object
file support and SPIRVInstPrinter.
Differential Revision: https://reviews.llvm.org/D116462
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
DXIL is wrapped in a container format defined by the DirectX 11
specification. Codebases differ in calling this format either DXBC or
DXILContainer.
Since eventually we want to add support for DXBC as a target
architecture and the format is used by DXBC and DXIL, I've termed it
DXContainer here.
Most of the changes in this patch are just adding cases to switch
statements to address warnings.
Reviewed By: pete
Differential Revision: https://reviews.llvm.org/D122062
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
The namespace llvm::swift is causing errors to pop up in the apple/llvm-project build when cherry-picking 4ce1f3d47c33 into apple/llvm-project
Differential Review: https://reviews.llvm.org/D118716
Add support for Swift reflection metadata to dsymutil.
This patch adds support for copying Swift reflection metadata (__swift5_.* sections) from .o files to into the symbol-rich binary in the output .dSYM. The functionality is automatically enabled only if a .o file has reflection metadata sections and the binary doesn't. When copying dsymutil moves the section from the __TEXT segment to the __DWARF segment.
rdar://76973336
Differential Revision: https://reviews.llvm.org/D115007
Add support for Swift reflection metadata to dsymutil.
This patch adds support for copying Swift reflection metadata (__swift5_.* sections) from .o files to into the symbol-rich binary in the output .dSYM. The functionality is automatically enabled only if a .o file has reflection metadata sections and the binary doesn't. When copying dsymutil moves the section from the __TEXT segment to the __DWARF segment.
rdar://76973336
Differential Revision: https://reviews.llvm.org/D115007
Add support for Swift reflection metadata to dsymutil.
This patch adds support for copying Swift reflection metadata (__swift5_.* sections) from .o files to into the symbol-rich binary in the output .dSYM. The functionality is automatically enabled only if a .o file has reflection metadata sections and the binary doesn't. When copying dsymutil moves the section from the __TEXT segment to the __DWARF segment.
rdar://76973336
https://reviews.llvm.org/D115007
This makes sure, that the text section will have a 2-byte alignment, if
the +c extension is enabled.
Reviewed By: MaskRay, luismarques
Differential Revision: https://reviews.llvm.org/D102052
Fixes issue where late materialized constants can be more strictly
aligned then their containing csect.
Differential Revision: https://reviews.llvm.org/D103103
- This patch consists of the bare basic code needed in order to generate some assembly for the z/OS target.
- Only the .text and the .bss sections are added for now.
- The relevant MCSectionGOFF/Symbol interfaces have been added. This enables us to print out the GOFF machine code sections.
- This patch enables us to add simple lit tests wherever possible, and contribute to the testing coverage for the z/OS target
- Further improvements and additions will be made in future patches.
Reviewed By: tmatheson
Differential Revision: https://reviews.llvm.org/D106380
This change was originally landed in: 5000a1b4b9edeb9e994f2a5b36da8d48599bea49
It was reverted in: 061e071d8c9b98526f35cad55a918a4f1615afd4
This change adds support for a new WASM_SEG_FLAG_STRINGS flag in
the object format which works in a similar fashion to SHF_STRINGS
in the ELF world.
Unlike the ELF linker this support is currently limited:
- No support for SHF_MERGE (non-string merging)
- Always do full tail merging ("lo" can be merged with "hello")
- Only support single byte strings (p2align 0)
Like the ELF linker merging is only performed at `-O1` and above.
This fixes part of https://bugs.llvm.org/show_bug.cgi?id=48828,
although crucially it doesn't not currently support debug sections
because they are not represented by data segments (they are custom
sections)
Differential Revision: https://reviews.llvm.org/D97657
This reverts commit 5000a1b4b9edeb9e994f2a5b36da8d48599bea49.
Breaks tests, see https://reviews.llvm.org/D97657#2749151
Easily repros locally with `ninja check-llvm-mc-webassembly`.
This change adds support for a new WASM_SEG_FLAG_STRINGS flag in
the object format which works in a similar fashion to SHF_STRINGS
in the ELF world.
Unlike the ELF linker this support is currently limited:
- No support for SHF_MERGE (non-string merging)
- Always do full tail merging ("lo" can be merged with "hello")
- Only support single byte strings (p2align 0)
Like the ELF linker merging is only performed at `-O1` and above.
This fixes part of https://bugs.llvm.org/show_bug.cgi?id=48828,
although crucially it doesn't not currently support debug sections
because they are not represented by data segments (they are custom
sections)
Differential Revision: https://reviews.llvm.org/D97657
This untangles the MCContext and the MCObjectFileInfo. There is a circular
dependency between MCContext and MCObjectFileInfo. Currently this dependency
also exists during construction: You can't contruct a MOFI without a MCContext
without constructing the MCContext with a dummy version of that MOFI first.
This removes this dependency during construction. In a perfect world,
MCObjectFileInfo wouldn't depend on MCContext at all, but only be stored in the
MCContext, like other MC information. This is future work.
This also shifts/adds more information to the MCContext making it more
available to the different targets. Namely:
- TargetTriple
- ObjectFileType
- SubtargetInfo
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101462
This patch allows generating TLS variables in assembly files on AIX.
Initialized and external uninitialized variables are generated with the
.csect pseudo-op and local uninitialized variables are generated with
the .comm/.lcomm pseudo-ops. The patch also adds a check to
explicitly say that TLS is not yet supported on AIX.
Reviewed by: daltenty, jasonliu, lei, nemanjai, sfertile
Originally patched by: bsaleil
Commandeered by: NeHuang
Differential Revision: https://reviews.llvm.org/D96184
We are going to support debug sections for XCOFF. So the csect
properties are not necessary. This patch makes these properties
optional.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D95931
This change introduces support for zero flag ELF section groups to LLVM.
LLVM already supports COMDAT sections, which in ELF are a special type
of ELF section groups. These are generally useful to enable linker GC
where you want a group of sections to always travel together, that is to
be either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF assemblers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D95851