Fixes the broken tests in the original commit:
2f01fd99eb8c8ab3db9aba72c4f00e31e9e60a05
This will probably break some downstream tools that don't already handle
debug records. If your downstream code breaks as a result of this
change, the simplest fix is to convert the module in question to the old
debug format before you process it, using
`Module::convertFromNewDbgValues()`. For more information about how to
handle debug records or about what has changed, see the migration
document:
https://llvm.org/docs/RemoveDIsDebugInfo.html
This reverts commit 00821fed09969305b0003d3313c44d1e761a7131.
This patch enables parsing and creating modules directly into the new
debug info format. Prior to this patch, all modules were constructed
with the old debug info format by default, and would be converted into
the new format just before running LLVM passes. This is an important
milestone, in that this means that every tool will now be exposed to
debug records, rather than those that run LLVM passes. As far as I've
tested, all LLVM tools/projects now either handle debug records, or
convert them to the old intrinsic format.
There are a few unit tests that need updating for this patch; these are
either cases of tests that previously needed to set the debug info
format to function, or tests that depend on the old debug info format in
some way. There should be no visible change in the output of any LLVM
tool as a result of this patch, although the likelihood of this patch
breaking downstream code means an NFC tag might be a little misleading,
if not technically incorrect:
This will probably break some downstream tools that don't already handle
debug records. If your downstream code breaks as a result of this
change, the simplest fix is to convert the module in question to the old
debug format before you process it, using
`Module::convertFromNewDbgValues()`. For more information about how to
handle debug records or about what has changed, see the migration
document:
https://llvm.org/docs/RemoveDIsDebugInfo.html
This reapplication changes debug intrinsic declaration removal to only take
place when printing final IR, so that the processing format of the Module
does not affect the output.
This reverts commit d128448efdd4e2bf3c9bc9a5b43ae642aa78026f.
Reverted due to failures on buildbots, where a new cl flag was placed
in the wrong file, resulting in link errors.
https://lab.llvm.org/buildbot/#/builders/198/builds/8548
This reverts commit 0b398256b3f72204ad1f7c625efe4990204e898a.
This patch adds support for printing the proposed non-instruction debug
info ("RemoveDIs") out to textual IR. This patch does not add any
bitcode support, parsing support, or documentation.
Printing of the new format is controlled by a flag added in this patch,
`--write-experimental-debuginfo`, which defaults to false. The new
format will be printed *iff* this flag is true, so whether we use the IR
format is completely independent of whether we use non-instruction debug
info during LLVM passes (which is controlled by the
`--try-experimental-debuginfo-iterators` flag).
Even with the flag disabled, some existing tests need to be updated, as this
patch causes debug intrinsic declarations to be changed in a round trip,
such that they always appear at the end of a module and have no attributes
(this has no functional change on the module).
The design of this new IR format was proposed previously on
Discourse, and any further discussion about the design can still be
contributed there:
https://discourse.llvm.org/t/rfc-debuginfo-proposed-changes-to-the-textual-ir-representation-for-debug-values/73491
Function::Function's constructor sets the debug info format based on the
passed in parent Module, so by using this rather than modifying the
function list directly, we pick up the debug info format automatically.
This reverts commit 957efa4ce4f0391147cec62746e997226ee2b836.
Original commit message below -- in this follow up, I've shifted
un-necessary inclusions of DebugProgramInstruction.h into being forward
declarations (fixes clang-compile time I hope), and a memory leak in the
DebugInfoTest.cpp IR unittests.
I also tracked a compile-time regression in D154080, more explanation
there, but the result of which is hiding some of the changes behind the
EXPERIMENTAL_DEBUGINFO_ITERATORS compile-time flag. This is tested by the
"new-debug-iterators" buildbot.
[DebugInfo][RemoveDIs] Add prototype storage classes for "new" debug-info
This patch adds a variety of classes needed to record variable location
debug-info without using the existing intrinsic approach, see the rationale
at [0].
The two added files and corresponding unit tests are the majority of the
plumbing required for this, but at this point isn't accessible from the
rest of LLVM as we need to stage it into the repo gently. An overview is
that classes are added for recording variable information attached to Real
(TM) instructions, in the form of DPValues and DPMarker objects. The
metadata-uses of DPValues is plumbed into the metadata hierachy, and a
field added to class Instruction, which are all stimulated in the unit
tests. The next few patches in this series add utilities to convert to/from
this new debug-info format and add instruction/block utilities to have
debug-info automatically updated in the background when various operations
occur.
This patch was reviewed in Phab in D153990 and D154080, I've squashed them
together into this commit as there are dependencies between the two
patches, and there's little profit in landing them separately.
[0] https://discourse.llvm.org/t/rfc-instruction-api-changes-needed-to-eliminate-debug-intrinsics-from-ir/68939
And some intervening fixups. There are two remaining problems:
* A memory leak via https://lab.llvm.org/buildbot/#/builders/236/builds/7120/steps/10/logs/stdio
* A performance slowdown with -g where I'm not completely sure what the cause it
These might be fairly straightforwards to fix, but it's the end of the day
hear, so I figure I'll clear the buildbots til tomorrow.
This reverts commit 7d77bbef4ad9230f6f427649373fe46a668aa909.
This reverts commit 9026f35afe6ffdc5e55b6615efcbd36f25b11558.
This reverts commit d97b2b389a0e511c65af6845119eb08b8a2cb473.
This patch adds a variety of classes needed to record variable location
debug-info without using the existing intrinsic approach, see the rationale
at [0].
The two added files and corresponding unit tests are the majority of the
plumbing required for this, but at this point isn't accessible from the
rest of LLVM as we need to stage it into the repo gently. An overview is
that classes are added for recording variable information attached to Real
(TM) instructions, in the form of DPValues and DPMarker objects. The
metadata-uses of DPValues is plumbed into the metadata hierachy, and a
field added to class Instruction, which are all stimulated in the unit
tests. The next few patches in this series add utilities to convert to/from
this new debug-info format and add instruction/block utilities to have
debug-info automatically updated in the background when various operations
occur.
This patch was reviewed in Phab in D153990 and D154080, I've squashed them
together into this commit as there are dependencies between the two
patches, and there's little profit in landing them separately.
[0] https://discourse.llvm.org/t/rfc-instruction-api-changes-needed-to-eliminate-debug-intrinsics-from-ir/68939
This allows us to not have to pass -mllvm flags to set the large data
threshold for (in-LLD/not-distributed) ThinLTO.
Follows https://reviews.llvm.org/D52322, which did the same for the code
model.
Since the large data threshold is tied to the code model and we disallow
mixing different code models, do the same for the large data threshold.
There are two motivations.
`-fno-pic -fstack-protector -mstack-protector-guard=global` created
`__stack_chk_guard` is referenced directly on all ELF OSes except FreeBSD.
This patch allows referencing the symbol indirectly with
-fno-direct-access-external-data.
Some Linux kernel folks want
`-fno-pic -fstack-protector -mstack-protector-guard-reg=gs -mstack-protector-guard-symbol=__stack_chk_guard`
created `__stack_chk_guard` to be referenced directly, avoiding
R_X86_64_REX_GOTPCRELX (even if the relocation may be optimized out by the linker).
https://github.com/llvm/llvm-project/issues/60116
Why they need this isn't so clear to me.
---
Add module flag "direct-access-external-data" and set the dso_local property of
the stack protector symbol. The module flag can benefit other LLVMCodeGen
synthesized symbols that are not represented in LLVM IR.
Nowadays, with `-fno-pic` being uncommon, ideally we should set
"direct-access-external-data" when it is true. However, doing so would require
~90 clang/test tests to be updated, which are too much.
As a compromise, we set "direct-access-external-data" only when it's different
from the implied default value.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D150841
This patch adds several missing NamedMDList modifier functions, like
removeNamedMDNode(), eraseNamedMDNode() and insertNamedMDNode().
There is no longer need to access the list directly so it also makes
getNamedMDList() private.
Differential Revision: https://reviews.llvm.org/D143969
Adding a module flag 'MaxTLSAlign' describing the maximum alignment a global TLS
variable can have. Optimizers are prevented from increasing the alignment of such
variables beyond this threshold.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D140123
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Using Max for both "PIC Level" and "PIE Level" is inconsistent. PIC imposes less
restriction while PIE imposes more restriction. The result generally
picks the more restrictive behavior: Min for PIC.
This choice matches `ld -r`: a non-pic object and a pic object merge into a
result which should be treated as non-pic.
To allow linking "PIC Level" using Error/Max from old bitcode files, upgrade
Error/Max to Min.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D130531
We have the `clang -cc1` command-line option `-funwind-tables=1|2` and
the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind
tables (1) or asynchronous unwind tables (2)`. However, this is
encoded in LLVM IR by the presence or the absence of the `uwtable`
attribute, i.e. we lose the information whether to generate want just
some unwind tables or asynchronous unwind tables.
Asynchronous unwind tables take more space in the runtime image, I'd
estimate something like 80-90% more, as the difference is adding
roughly the same number of CFI directives as for prologues, only a bit
simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even
more, if you consider tail duplication of epilogue blocks.
Asynchronous unwind tables could also restrict code generation to
having only a finite number of frame pointer adjustments (an example
of *not* having a finite number of `SP` adjustments is on AArch64 when
untagging the stack (MTE) in some cases the compiler can modify `SP`
in a loop).
Having the CFI precise up to an instruction generally also means one
cannot bundle together CFI instructions once the prologue is done,
they need to be interspersed with ordinary instructions, which means
extra `DW_CFA_advance_loc` commands, further increasing the unwind
tables size.
That is to say, async unwind tables impose a non-negligible overhead,
yet for the most common use cases (like C++ exceptions), they are not
even needed.
This patch extends the `uwtable` attribute with an optional
value:
- `uwtable` (default to `async`)
- `uwtable(sync)`, synchronous unwind tables
- `uwtable(async)`, asynchronous (instruction precise) unwind tables
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114543
This patch extends clang frontend to add metadata that can be used to emit macho files with two build version load commands.
It utilizes "darwin.target_variant.triple" and "darwin.target_variant.SDK Version" metadata names for that.
MachO uses two build version load commands to represent an object file / binary that is targeting both the macOS target,
and the Mac Catalyst target. At runtime, a dynamic library that supports both targets can be loaded from either a native
macOS or a Mac Catalyst app on a macOS system. We want to add support to this to upstream to LLVM to be able to build
compiler-rt for both targets, to finish the complete support for the Mac Catalyst platform, which is right now targetable
by upstream clang, but the compiler-rt bits aren't supported because of the lack of this multiple build version support.
Differential Revision: https://reviews.llvm.org/D115415
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
This reverts commit fd4808887ee47f3ec8a030e9211169ef4fb094c3.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
This patch extends LLVM IR to add metadata that can be used to emit macho files with two build version load commands.
It utilizes "darwin.target_variant.triple" and "darwin.target_variant.SDK Version" metadata names for that,
which will be set by a future patch in clang.
MachO uses two build version load commands to represent an object file / binary that is targeting both the macOS target,
and the Mac Catalyst target. At runtime, a dynamic library that supports both targets can be loaded from either a native
macOS or a Mac Catalyst app on a macOS system. We want to add support to this to upstream to LLVM to be able to build
compiler-rt for both targets, to finish the complete support for the Mac Catalyst platform, which is right now targetable
by upstream clang, but the compiler-rt bits aren't supported because of the lack of this multiple build version support.
Differential Revision: https://reviews.llvm.org/D112189
This is a second attempt to fix the EXPENSIVE_CHECKS issue that was mentioned In D91661#2875179 by @jroelofs.
(The first attempt was in D105983)
D91661 more or less completely reverted D49126 and by doing so also removed the cleanup logic of the created declarations and calls.
This patch is a replacement for D91661 (which must itself be reverted first). It replaces the custom declaration creation with the
generic version and shows the test impact. It also tracks the number of NamedValues to detect if a new prototype was added instead
of looking at the available users of a prototype.
Reviewed By: jroelofs
Differential Revision: https://reviews.llvm.org/D106147
-Wframe-larger-than= is an interesting warning; we can't know the frame
size until PrologueEpilogueInsertion (PEI); very late in the compilation
pipeline.
-Wframe-larger-than= was propagated through CC1 as an -mllvm flag, then
was a cl::opt in LLVM's PEI pass; this meant it was dropped during LTO
and needed to be re-specified via -plugin-opt.
Instead, make it part of the IR proper as a module level attribute,
similar to D103048. Introduce -fwarn-stack-size CC1 option.
Reviewed By: rsmith, qcolombet
Differential Revision: https://reviews.llvm.org/D103928
`non-global-value-max-name-size` is used by `Value` to cap the length of local value name. However, this flag is not considered by `LLParser`, which leads to unexpected `use of undefined value error`. The fix is to move the responsibility of capping the length to `ValueSymbolTable`.
The test is the one provided by [[ https://bugs.llvm.org/show_bug.cgi?id=45899 | Mikael in the bug report ]].
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D102707
D88631 added initial support for:
- -mstack-protector-guard=
- -mstack-protector-guard-reg=
- -mstack-protector-guard-offset=
flags, and D100919 extended these to AArch64. Unfortunately, these flags
aren't retained for LTO. Make them module attributes rather than
TargetOptions.
Link: https://github.com/ClangBuiltLinux/linux/issues/1378
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D102742
The Linux kernel objtool diagnostic `call without frame pointer save/setup`
arise in multiple instrumentation passes (asan/tsan/gcov). With the mechanism
introduced in D100251, it's trivial to respect the command line
-m[no-]omit-leaf-frame-pointer/-f[no-]omit-frame-pointer, so let's do it.
Fix: https://github.com/ClangBuiltLinux/linux/issues/1236 (tsan)
Fix: https://github.com/ClangBuiltLinux/linux/issues/1238 (asan)
Also document the function attribute "frame-pointer" which is long overdue.
Differential Revision: https://reviews.llvm.org/D101016
On ELF targets, if a function has uwtable or personality, or does not have
nounwind (`needsUnwindTableEntry`), it marks that `.eh_frame` is needed in the module.
Then, a function gets `.eh_frame` if `needsUnwindTableEntry` or `-g[123]` is specified.
(i.e. If -g[123], every function gets `.eh_frame`.
This behavior is strange but that is the status quo on GCC and Clang.)
Let's take asan as an example. Other sanitizers are similar.
`asan.module_[cd]tor` has no attribute. `needsUnwindTableEntry` returns true,
so every function gets `.eh_frame` if `-g[123]` is specified.
This is the root cause that
`-fno-exceptions -fno-asynchronous-unwind-tables -g` produces .debug_frame
while
`-fno-exceptions -fno-asynchronous-unwind-tables -g -fsanitize=address` produces .eh_frame.
This patch
* sets the nounwind attribute on sanitizer module ctor/dtor.
* let Clang emit a module flag metadata "uwtable" for -fasynchronous-unwind-tables. If "uwtable" is set, sanitizer module ctor/dtor additionally get the uwtable attribute.
The "uwtable" mechanism is generic: synthesized functions not cloned/specialized
from existing ones should consider `Function::createWithDefaultAttr` instead of
`Function::create` if they want to get some default attributes which
have more of module semantics.
Other candidates: "frame-pointer" (https://github.com/ClangBuiltLinux/linux/issues/955https://github.com/ClangBuiltLinux/linux/issues/1238), dso_local, etc.
Differential Revision: https://reviews.llvm.org/D100251
This patch adds support for intrinsic overloading on unnamed types.
This fixes PR38117 and PR48340 and will also be needed for the Full Restrict Patches (D68484).
The main problem is that the intrinsic overloading name mangling is using 's_s' for unnamed types.
This can result in identical intrinsic mangled names for different function prototypes.
This patch changes this by adding a '.XXXXX' to the intrinsic mangled name when at least one of the types is based on an unnamed type, ensuring that we get a unique name.
Implementation details:
- The mapping is created on demand and kept in Module.
- It also checks for existing clashes and recycles potentially existing prototypes and declarations.
- Because of extra data in Module, Intrinsic::getName needs an extra Module* argument and, for speed, an optional FunctionType* argument.
- I still kept the original two-argument 'Intrinsic::getName' around which keeps the original behavior (providing the base name).
-- Main reason is that I did not want to change the LLVMIntrinsicGetName version, as I don't know how acceptable such a change is
-- The current situation already has a limitation. So that should not get worse with this patch.
- Intrinsic::getDeclaration and the verifier are now using the new version.
Other notes:
- As far as I see, this should not suffer from stability issues. The count is only added for prototypes depending on at least one anonymous struct
- The initial count starts from 0 for each intrinsic mangled name.
- In case of name clashes, existing prototypes are remembered and reused when that makes sense.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91250
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
Iterating on `SmallPtrSet<GlobalValue *, 8>` with more than 8 elements
is not deterministic. Use a SmallVector instead because `Used` is guaranteed to contain unique elements.
While here, decrease inline element counts from 8 to 4. The number of
`llvm.used`/`llvm.compiler.used` elements is usually 0 or 1. For full
LTO/hybrid LTO, the number may be large, so we need to be careful.
According to tejohnson's analysis https://reviews.llvm.org/D97128#2582399 , 4 is
good for a large project with WholeProgramDevirt, when available_externally
vtables are placed in the llvm.compiler.used set.
Differential Revision: https://reviews.llvm.org/D97128
This allows the option to affect the LTO output. Module::Max helps to
generate debug info for all modules in the same format.
Differential Revision: https://reviews.llvm.org/D96597
The idea is that the CC1 default for ELF should set dso_local on default
visibility external linkage definitions in the default -mrelocation-model pic
mode (-fpic/-fPIC) to match COFF/Mach-O and make output IR similar.
The refactoring is made available by 2820a2ca3a0e69c3f301845420e0067ffff2251b.
Currently only x86 supports local aliases. We move the decision to the driver.
There are three CC1 states:
* -fsemantic-interposition: make some linkages interposable and make default visibility external linkage definitions dso_preemptable.
* (default): selected if the target supports .Lfoo$local: make default visibility external linkage definitions dso_local
* -fhalf-no-semantic-interposition: if neither option is set or the target does not support .Lfoo$local: like -fno-semantic-interposition but local aliases are not used. So references can be interposed if not optimized out.
Add -fhalf-no-semantic-interposition to a few tests using the half-based semantic interposition behavior.