The mul by constant costmodels handle power-of-2 constants, but not negated-power-of-2, despite the backends handling both.
This patch adds the OperandValueProperties::OP_NegatedPowerOf2 enum and wires it for use for basic mul cost analysis and SLP handling.
Fixes#50778
Differential Revision: https://reviews.llvm.org/D111968
The compiler does not reorder the gather nodes with reused scalars, just
does it for opernads of the user nodes. This currently does not affect
the compiler but breaks internal logic of the SLP graph. In future, it
is supposed to actually use all nodes instead of just list of operands
and this will affect the vectorization result.
Also, did some early check to avoid complex logic in cost estimation
analysis, should improve compiler time a bit.
Added the mask and the analysis of the buildvector sequence in the
isUndefVector function, improves codegen and cost estimation.
Metric: SLP.NumVectorInstructions
Program SLP.NumVectorInstructions
results results0 diff
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 27362.00 27360.00 -0.0%
Metric: size..text
Program size..text
results results0 diff
test-suite :: External/SPEC/CFP2017rate/508.namd_r/508.namd_r.test 805299.00 806035.00 0.1%
526.blender_r - some extra code is vectorized.
508.namd_r - some extra code is optimized out.
Differential Revision: https://reviews.llvm.org/D133891
Adding the pre-header to CSEBlocks ensures instructions are CSE'd even
after hoisting.
This was original discovered by @atrick a while ago.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D133649
If the reused scalars are clustered, i.e. each part of the reused mask
contains all elements of the original scalars exactly once, we can
reorder those clusters to improve the whole ordering of of the clustered
vectors.
Differential Revision: https://reviews.llvm.org/D133524
Need either follow the original order of the operands for bool logical
ops, or emit freeze instruction to avoid poison propagation.
Differential Revision: https://reviews.llvm.org/D126877
This is NOT nfc. Specifically, the following behavior changes:
* Pointers are now allowed. Both uniform, and constants.
* FP uniform non-constants can now be recognized.
* FP undefs are no longer considered constant. This matches int behavior which we had tests for. FP behavior was untested. Its not clear to me int behavior is reasonable, but it's what tests seem to expect, so go with minimum impact for now.
The pointer operands for the ScatterVectorize node may contain
non-instruction values and they are not checked for "already being
vectorized". Need to check that such pointers are already vectorized and
gather them instead of trying to build vectorize node to avoid compiler
crash.
Differential Revision: https://reviews.llvm.org/D132949
Removed EnableFP parameter in getOperandInfo function since it is not
needed, the operands kinds also controlled by the operation code, which
allows to remove extra check for the type of the operands. Also, added
analysis for uniform constant float values.
This change currently does not trigger any changes in the code since TTI
does not do analysis for constant floats, so it can be considered NFC.
Tested with llvm-test-suite + SPEC2017, no changes.
Differential Revision: https://reviews.llvm.org/D132886
This patch changes order of searching for reductions vs other vectorization possibilities.
The idea is if we do not match a reduction it won't be harmful for further attempts to
find vectorizable operations on a vector build sequences. But doing it in the opposite
order we have good chance to ruin opportunity to match a reduction later.
We also don't want to try vectorizing binary operations too early as 2-way vectorization
may effectively prohibit wider ones leading to producing less effective code.
Differential Revision: https://reviews.llvm.org/D132590
When estimating the cost of the in-tree vectorized scalars in
buildvector sequences, need to take into account the vectorized
insertelement instruction. The top of the buildvector seuences is the
topmost vectorized insertelement instruction, because it will have
> than 1 use after the vectorization.
For the affected test case improves througput from 21 to 16 (per
llvm-mca).
Differential Revision: https://reviews.llvm.org/D132740
The goal is to separate collecting items for post-processing
and processing them. Post processing also outlined as
dedicated method.
Differential Revision: https://reviews.llvm.org/D132603
This removes the last use of OperandValueKind from the client side API, and (once this is fully plumbed through TTI implementation) allow use of the same properties in store costing as arithmetic costing.
This completes the client side transition to the OperandValueInfo version of this routine. Backend TTI implementations still use the prior versions for now.
OperandValueKind and OperandValueProperties both provide facts about the operands of an instruction for purposes of cost modeling. We've discussed merging them several times; before I plumb through more flags, let's go ahead and do so.
This change only adds the client side interface for getArithmeticInstrCost and makes a couple of minor changes in client code to prove that it works. Target TTI implementations still use the split flags. I'm deliberately splitting what could be one big change into a series of smaller ones so that I can lean on the compiler to catch errors along the way.
Defaults to TCK_RecipThroughput - as most explicit calls were assuming TCK_RecipThroughput (vectorizers) or was just doing a before-vs-after comparison (vectorcombiner). Calls via getInstructionCost were just dropping the CostKind, so again there should be no change at this time (as getShuffleCost and its expansions don't use CostKind yet) - but it will make it easier for us to better account for size/latency shuffle costs in inline/unroll passes in the future.
Differential Revision: https://reviews.llvm.org/D132287
SLP vectorizer tries to find the reductions starting the operands of the
instructions with no-users/void returns/etc. But such operands can be
postponable instructions, like Cmp, InsertElement or InsertValue. Such
operands still must be postponed, vectorizer should not try to vectorize
them immediately.
Differential Revision: https://reviews.llvm.org/D131965
In many cases constant buildvector results in a vector load from a
constant/data pool. Need to consider this cost too.
Differential Revision: https://reviews.llvm.org/D126885
Currently, we try to vectorize values, feeding into stores, only if
slp-vectorize-hor-store option is provided. We can safely enable
vectorization of the value operand of a single store in the basic block,
if the operand value is used only in store.
It should enable extra vectorization and should not increase compile
time significantly.
Fixes https://github.com/llvm/llvm-project/issues/51320
Differential Revision: https://reviews.llvm.org/D131894
A const reference is preferred over a non-null const pointer.
`Type *` is kept as is to match the other overload.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D131197
1) Overloaded (instruction-based) method is a wrapper around the current (opcode-based) method.
2) This patch also changes a few callsites (VectorCombine.cpp,
SLPVectorizer.cpp, CodeGenPrepare.cpp) to call the overloaded method.
3) This is a split of D128302.
Differential Revision: https://reviews.llvm.org/D131114
We currently assert in vectorizeTree(TreeEntry*) when processing a PHI
bundle in a block containing a catchswitch. We attempt to set the
IRBuilder insertion point following the catchswitch, which is invalid.
This is done so that ShuffleBuilder.finalize() knows where to insert
a shuffle if one is needed.
To avoid this occurring, watch out for catchswitch blocks during
buildTree_rec() processing, and avoid adding PHIs in such blocks to
the vectorizable tree. It is unlikely that constraining vectorization
over an exception path will cause a noticeable performance loss, so
this seems preferable to trying to anticipate when a shuffle will and
will not be required.