This flag was used to let us incrementally introduce debug records
into LLVM, however everything is now using records. It serves no
purpose now, so delete it.
Currently, GlobalObject has an "alignment" property... but it's
basically nonsense: alignment doesn't mean the same thing for variables
and functions, and it's completely meaningless for ifuncs.
This "removes" (actually marking protected) the methods from
GlobalObject, adds the relevant methods to Function and GlobalVariable,
and adjusts the code appropriately.
This should make future alignment-related cleanups easier.
With this change, some callers get to use StringRef::starts_with.
I'm planning to teach getAsmString to return StringRef also, but
I'ld like to keep that separate from this patch.
This patch adds support for LLVM IR atomicrmw `fmaximum` and `fminimum`
instructions.
These mirror the `llvm.maximum.*` and `llvm.minimum.*` instructions, but
are atomic and use IEEE754 2019 handling for NaNs, which is different to
`fmax` and `fmin`. See:
https://llvm.org/docs/LangRef.html#llvm-minimum-intrinsic
for more details.
Future changes will allow this LLVM IR to be lowered to specialised
assembler instructions on suitable targets, such as AArch64.
This patch adds support for LLVM IR atomicrmw `fmaximum` and `fminimum`
instructions.
These mirror the `llvm.maximum.*` and `llvm.minimum.*` instructions, but
are atomic and use IEEE754 2019 handling for NaNs, which is different to
`fmax` and `fmin`. See:
https://llvm.org/docs/LangRef.html#llvm-minimum-intrinsic
for more details.
Future changes will allow this LLVM IR to be lowered to specialised
assembler instructions on suitable targets, such as AArch64.
Resolves#129439.
The addition to `echo.ll` is for testing `ConstantArray`, because every
other array in that file is in fact a `ConstantDataArray` and now takes
the new code path in `echo.cpp`.
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.
For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.
The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
Change the return type of `LLVMIntrinsicCopyOverloadedName` and
`LLVMIntrinsicCopyOverloadedName2` to `char *` instead of `const char *`
since the returned memory is owned by the caller and we expect that the
returned pointer is passed to free to deallocate it (without casting it
back to non-const pointer).
Rename the function to reflect its correct behavior and to be consistent
with `Module::getOrInsertFunction`. This is also in preparation of
adding a new `Intrinsic::getDeclaration` that will have behavior similar
to `Module::getFunction` (i.e, just lookup, no creation).
Since the migration from `@llvm.dbg.value` intrinsic to `#dbg_value`
records, there is no way to retrieve the debug records for an
`Instruction` in LLVM-C API.
Previously, with debug info intrinsics, retrieving debug info for an
`Instruction` could be done with `LLVMGetNextInstructions`, because the
intrinsic call was also an instruction.
However, to be able to retrieve debug info with the current LLVM, where
debug records are used, the `getDbgRecordRange()` iterator needs to be
exposed.
Add new functions for DbgRecord sequence traversal:
LLVMGetFirstDbgRecord
LLVMGetLastDbgRecord
LLVMGetNextDbgRecord
LLVMGetPreviousDbgRecord
See llvm/docs/RemoveDIsDebugInfo.md and release notes.
Another upstreaming of C API extensions we have in Julia/LLVM.jl.
Although [we went](https://github.com/maleadt/LLVM.jl/pull/431) with a
string-based API there, here I'm proposing something that's similar to
existing metadata/attribute APIs:
- explicit functions to map syncscope names to IDs, and back
- `LLVM*SyncScope` versions of builder APIs that already take a
`SingleThread` argument: atomic rmw, atomic xchg, fence
- `LLVMGetAtomicSyncScopeID` and `LLVMSetAtomicSyncScopeID` for other
atomic instructions
- testing through `llvm-c-test`'s `--echo` functionality
Add `LLVMGetNamedFunctionWithLength` and `LLVMGetNamedGlobalWithLength`
As far as i know, it isn't currently possible to use
`LLVMGetNamedFunction` and `LLVMGetNamedGlobal` with non-null-terminated
strings.
These new functions are more convenient for C programs that use
non-null-terminated strings or for languages like Rust that primarily
use non-null-terminated strings.
It is now translated to `<1 x i64>`, which allows the removal of a bunch
of special casing.
This _incompatibly_ changes the ABI of any LLVM IR function with
`x86_mmx` arguments or returns: instead of passing in mmx registers,
they will now be passed via integer registers. However, the real-world
incompatibility caused by this is expected to be minimal, because Clang
never uses the x86_mmx type -- it lowers `__m64` to either `<1 x i64>`
or `double`, depending on ABI.
This change does _not_ eliminate the SelectionDAG `MVT::x86mmx` type.
That type simply no longer corresponds to an IR type, and is used only
by MMX intrinsics and inline-asm operands.
Because SelectionDAGBuilder only knows how to generate the
operands/results of intrinsics based on the IR type, it thus now
generates the intrinsics with the type MVT::v1i64, instead of
MVT::x86mmx. We need to fix this before the DAG LegalizeTypes, and thus
have the X86 backend fix them up in DAGCombine. (This may be a
short-lived hack, if all the MMX intrinsics can be removed in upcoming
changes.)
Works towards issue #98272.
This is a new constant type that was added to the C++ API in
0edc97f119f3ac3ff96b11183fe5c001a48a9a8d. This adds the ability to
create instances of this constant and get its values to the C API.
Accessors for the name, type parameters, and integer parameters are
added. A test is added to echo.ll
This was originally done in
https://github.com/llvm/llvm-project/pull/71291 but that has been stale
for several months. This re-applies the changes, but with some tweaks.
e.g. removing the bulk getters in favour of a simple get-by-index
approach for the type/integer parameters. The latter is more in line
with the rest of the API
Uses the new InsertPosition class (added in #94226) to simplify some of
the IRBuilder interface, and removes the need to pass a BasicBlock
alongside a BasicBlock::iterator, using the fact that we can now get the
parent basic block from the iterator even if it points to the sentinel.
This patch removes the BasicBlock argument from each constructor or call
to setInsertPoint.
This has no functional effect, but later on as we look to remove the
`Instruction *InsertBefore` argument from instruction-creation
(discussed
[here](https://discourse.llvm.org/t/psa-instruction-constructors-changing-to-iterator-only-insertion/77845)),
this will simplify the process by allowing us to deprecate the
InsertPosition constructor directly and catch all the cases where we use
instructions rather than iterators.
Add `LLVMPositionBuilderBeforeDbgRecords` and
`LLVMPositionBuilderBeforeInstrAndDbgRecords` to `llvm/include/llvm-c/Core.h`
which behave the same as `LLVMPositionBuilder` and `LVMPositionBuilderBefore`
except that the position is set before debug records attached to the target
instruction (the existing functions set the insertion point to after any
attached debug records).
More info on debug records and the migration towards using them can be found
here: https://llvm.org/docs/RemoveDIsDebugInfo.html
The distinction is important in some situations. An important example is when
inserting a phi before another instruction which has debug records attached to
it (these come "before" the instruction). Inserting before the instruction but
after the debug records would result in having debug records before a phi, which
is illegal. That results in an assertion failure:
`llvm/lib/IR/Instruction.cpp:166: Assertion '!isa<PHINode>(this) && "Inserting
PHI after debug-records!"' failed.`
In llvm (C++) we've added bit to instruction iterators that carries around the
extra information. Adding dedicated functions seemed like the least invasive and
least suprising way to update the C API.
Update llvm/tools/llvm-c-test/debuginfo.c to test this functionality.
Update the OCaml bindings, the migration docs and release notes.
Remove support for the icmp and fcmp constant expressions.
This is part of:
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179
As usual, many of the updated tests will no longer test what they were
originally intended to -- this is hard to preserve when constant
expressions get removed, and in many cases just impossible as the
existence of a specific kind of constant expression was the cause of the
issue in the first place.
This adds LLVMBuildCallBr to create CallBr instructions, and getters for
the CallBr-specific data. The remainder of its data, e.g.
arguments/function, can be accessed using existing getters.
These previously were added in the C++ API in
778cf5431cafc243f81dd5c8cbd27701ff7f9120, but without updating the enum
in the C API or mapping functions.
Corresponding tests for all current atomicrmw bin ops have been added as
well.
Follow on from #84915 which adds the DbgRecord function variants. The C API
changes were reviewed in #85657.
# C API
Update the LLVMDIBuilderInsert... functions to insert DbgRecords instead
of debug intrinsics.
LLVMDIBuilderInsertDeclareBefore
LLVMDIBuilderInsertDeclareAtEnd
LLVMDIBuilderInsertDbgValueBefore
LLVMDIBuilderInsertDbgValueAtEnd
Calling these functions will now cause an assertion if the module is in the
wrong debug info format. They should only be used when the module is in "new
debug format".
Use LLVMIsNewDbgInfoFormat to query and LLVMSetIsNewDbgInfoFormat to change the
debug info format of a module.
Please see https://llvm.org/docs/RemoveDIsDebugInfo.html#c-api-change
(RemoveDIsDebugInfo.md) for more info.
# OCaml bindings
Add set_is_new_dbg_info_format and is_new_dbg_info_format to the OCaml bindings.
These can be used to set and query the current debug info mode. These will
eventually be removed, but are useful while we're transitioning between old and
new debug info formats.
Add string_of_lldbgrecord, like string_of_llvalue but prints DbgRecords.
In test dbginfo.ml, unconditionally set the module debug info to the new mode
and update CHECK lines to check for DbgRecords. Without this change the test
crashes because it attempts to insert DbgRecords (new default behaviour of
llvm_dibuild_insert_declare_...) into a module that is in the old debug info
mode.
Follow on from #84739, which updates the DIBuilder class.
All the functions that have been added are temporary and will be
deprecated in the future. The intention is that they'll help downstream
projects adapt during the transition period.
```
New functions (all to be deprecated)
------------------------------------
LLVMIsNewDbgInfoFormat # Returns true if the module is in the new non-instruction mode.
LLVMSetIsNewDbgInfoFormat # Convert to the requested debug info format.
LLVMDIBuilderInsertDeclareIntrinsicBefore # Insert a debug intrinsic (old debug info format).
LLVMDIBuilderInsertDeclareIntrinsicAtEnd # Same as above.
LLVMDIBuilderInsertDbgValueIntrinsicBefore # Same as above.
LLVMDIBuilderInsertDbgValueIntrinsicAtEnd # Same as above.
LLVMDIBuilderInsertDeclareRecordBefore # Insert a debug record (new debug info format).
LLVMDIBuilderInsertDeclareRecordAtEnd # Same as above.
LLVMDIBuilderInsertDbgValueRecordBefore # Same as above.
LLVMDIBuilderInsertDbgValueRecordAtEnd # Same as above.
```
The existing `LLVMDIBuilderInsert...` functions call through to the
intrinsic versions (old debug info format) currently.
In the next patch, I'll swap them to call the debug records versions
(new debug info format). Downstream users of this API can query and
change the current format using the first two functions above, or can
instead opt to temporarily use intrinsics or records explicitly.
Adds `LLVMConstStringInContext2` and `LLVMConstString2`, which are
identical to originals except that they use `size_t` for length. This is
a clone of
35276f16e5
and is needed for https://github.com/rust-lang/rust/pull/122000.
As an aside, the issue of 32 bit overflow on constants is present in the
C++ APIs as well. A few classes, e.g. `ConstantDataArray` and
`ConstantAggregateZero`, can hold 64-bit ArrayTypes but their length
accessors return 32-bit values. This means the same issue from the
original Rust report is also present in LLVM itself. Would it be a
reasonable goal to update all of these length methods & types to be
uint64_t, or would that be too breaking? Alternatively, we could use
safe fallible casts instead of implicit ones inside the accessors (if an
overflow does happen, the solution would be to use
`MyValue->getType()->getArrayNumElements()` instead).
This allows for accessing the function/basic block that a blockaddress
constant refers to
Due to the difficulties of fully supporting cloning BlockAddress values
in echo.cpp, tests are instead done using a unit test.
This previously was up for review at
https://github.com/llvm/llvm-project/pull/77390.
These flags are usable on floating point arithmetic, as well as call,
select, and phi instructions whose resulting type is floating point, or
a vector of, or an array of, a valid type. Whether or not the flags are
valid for a given instruction can be checked with the new
LLVMCanValueUseFastMathFlags function.
These are exposed using a new LLVMFastMathFlags type, which is an alias
for unsigned. An anonymous enum defines the bit values for it.
Tests are added in echo.ll for select/phil/call, and the floating point
types in the new float_ops.ll bindings test.
Select and the floating point arithmetic instructions were not
implemented in llvm-c-test/echo.cpp, so they were added as well.
Added the following functions for manipulating operand bundles, as well as
building ``call`` and ``invoke`` instructions that use operand bundles:
* LLVMBuildCallWithOperandBundles
* LLVMBuildInvokeWithOperandBundles
* LLVMCreateOperandBundle
* LLVMDisposeOperandBundle
* LLVMGetNumOperandBundles
* LLVMGetOperandBundleAtIndex
* LLVMGetNumOperandBundleArgs
* LLVMGetOperandBundleArgAtIndex
* LLVMGetOperandBundleTag
Fixes#71873.
Remove support for the fptrunc, fpext, fptoui, fptosi, uitofp and sitofp
constant expressions. All places creating them have been removed
beforehand, so this just removes the APIs and uses of these constant
expressions in tests.
With this, the only remaining FP operation that still has constant
expression support is fcmp.
This is part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
Remove support for zext and sext constant expressions. All places
creating them have been removed beforehand, so this just removes the
APIs and uses of these constant expressions in tests.
There is some additional cleanup that can be done on top of this, e.g.
we can remove the ZExtInst vs ZExtOperator footgun.
This is part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
Fixes https://github.com/llvm/llvm-project/issues/65227
LLVMGetOrdering previously did not support Fence instructions, and
calling it on a fence would lead to a bad cast as it
assumed a load/store, or an AtomicRMWInst. This would either read a
garbage memory order, or assertion
LLVMIsAtomicSingleThread did not support either Fence instructions,
loads, or stores, and would similarly lead to a bad cast.
It happened to work out since the relevant types all have their synch
scope ID at the same offset, but it still should be fixed
These cases are now fixed for the C API, and tests for these
instructions are added. The echo test utility now also supports cloning
Fence instructions, which it did not previously
-----
From what I can tell, there's no unified API to pull
`getOrdering`/`getSyncScopeID` from, and instead requires casting to
individual types: if there is a better way of handling this I can switch
to that