intrinsics.
Those operations are updated under a tail agnostic policy, but they
could have mask agnostic or undisturbed.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D120228
We have a special case to skip this transform if c1 is 0xffffffff
and x is sext_inreg in order to use sraiw+zext.w. But we were only
checking that we have a sext_inreg opcode, not how many bits are
being sign extended.
This commit adds a check that it is a sext_inreg from i32 so we know for
sure that an sraiw can be created.
vmsgeu.vi with 0 is always true, but in the masked with mask undisturbed
policy, we still need to keep inactive elelemt which come from maskedoff.
We could return mask directly if it's mask agnostic policy in the future.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D121080
We should not emit a tail agnostic vlse for a tail undisturbed vmv.s.x
In D119688:
- if (IsScalarMove && !Node->getOperand(0).isUndef())
+ bool HasPassthruOperand = Node->getOpcode() != ISD::SPLAT_VECTOR;
+ if (HasPassthruOperand && !IsScalarMove &&
!Node->getOperand(0).isUndef())
break;
The IsScalarMove check in the if statement had been changed.
Differential Revision: https://reviews.llvm.org/D120963
In this patch, we add a more narrower exclusion for
zeroext (srl x) -> srli (slli x), so that it provides an opportunity
for the selection of sraiw.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D120467
With the condition N->use_empty(), the root node of DAG always
misses peephole optimization. So a dummy node is needed.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D119934
Due to an incorrect copy/paste from load intrinsic handling we
checked if the splat node was a MemSDNode which of course it isn't.
Instead get the MemOperand from the LoadSDNode for the source of
the splat.
This enables LICM to see the load is loop invariant and hoist it
out of the loop.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D120014
Add the passthru operand for
VMV_V_X_VL, VFMV_V_F_VL and SPLAT_VECTOR_SPLIT_I64_VL also.
The goal is support tail and mask policy in RVV builtins.
We focus on IR part first.
If the passthru operand is undef, we use tail agnostic, otherwise
use tail undisturbed.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D119688
The VLMaxSentinel is represented as TargetConstant, but that's included
in isa<ConstantSDNode>. To keep constant VLs and VLMax separate as long
as possible, use the X0 register during lowering and only convert to
VLMaxSentinel during isel.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D118845
This patch builds on top of D119197 to canonicalize floating-point
SPLAT_VECTOR as RISCVISD::VFMV_V_F_VL as a pre-process ISel step.
This primarily benefits scalable-vector VP code, where our VP patterns
only match VFMV_V_F_VL to reduce the burden on our ISel patterns, but
where at the same time, scalable-vector code doesn't custom-legalize
SPLAT_VECTOR.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117670
If the shift amount is (sub C, X) where C is 0 modulo the size of
the shift, we can replace it with neg or negw.
Similar is is done for AArch64 and X86.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D119089
This allows us to remove some isel patterns that exist for both
operations. Saving nearly 3000 bytes from the isel table.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D119197
This patch drops TableGen patterns matching all-ones masked RVV pseudos
in the case where there are fallback patterns matching the generic
masked forms to "_MASK" pseudos. This optimization is now performed with
a SelectionDAG post-processing step which peephole-optimizes these same
pseudos with all-ones masks and swaps them out to their unmasked
pseudos.
This cuts our generated ISel table down by around ~5% (~110kB) in lieu
of a far smaller auto-generated table to help with the peephole.
This only targets our custom RISCVISD::*_VL binary operator nodes, which
use the one form for both masked and unmasked variants. A similar
approach could be used for our intrinsics but we'd need to do some work,
e.g., to represent unmasked intrinsics as true-masked intrinsics at the
IR or ISel level. At a rough estimate, this could save us a further 9%
on the size of our ISel table for the binary intrinsic patterns alone.
There is no observable impact on our tests.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D118810
Only isel (and (srl (sexti32 Y), c2), c1) -> (srliw (sraiw Y, 31), c3 - 32)
when there is a sext_inreg present. Don't both checking for Y
having 32 sign bits.
This code tries to replace the pattern with a pair of shifts, but
we were excluding if the And could be a zext.h or zext.w. The SLLI/SRL
pair is more compressible and doesn't come with much down side.
We do regress one test case in rv64i-exhaustive-w-insts.ll but we
can probably add a narrower exclusion for that case.
SPLAT_VECTOR_I64 has the same semantics as RISCVISD::VMV_V_X_VL, it
just assumed VLMax instead of carrying a VL operand.
Include order of RISCVInstrInfoVSDPatterns.td and RISCVInstrInfoVVLPatterns.td
has been swapped to avoid moving riscv_vmv_v_x_vl into
RISCVInstrInfoVSDPatterns.td and to allow moving other "_vl" SDNodes back to
RISCVInstrInfoVVLPatterns.td
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D118841
VLMaxSentintel happens to be represented as -1 TargetConstant. A user
provided -1 would be an ISD::Constant. We shouldn't assume that they
are the same thing. I'm still not entirely convinced that we should be
treating -1 from the user as VLMAX.
Also fix one place that failed to use XLenVT for the VLMaxSentinel,
using MVT::i64 in code that only executes on RV32.
Where the instruction mnemonic contains a dot, we name the corresponding
instruction in the .td file using a _ in the place of the dot. e.g. LR_W
rather than LRW. This commit updates RISCVInstrInfoZb.td to follow that
convention.
The goal is support tail and mask policy in RVV builtins.
We focus on IR part first.
If the passthru operand is undef, we use tail agnostic, otherwise
use tail undisturbed.
Co-Authored-by: Hsiangkai Wang <Hsiangkai@gmail.com>
Reviewers: craig.topper, frasercrmck
Differential Revision: https://reviews.llvm.org/D117647
This patch introduces new intrinsics that enable the use of vsetvli in
contexts where only the returned vector length is of interest. The
pre-existing intrinsics are marked with side-effects, which prevents
even trivial optimizations on/across them.
These intrinsics are intended to be used in situations where the vector
length is fed in turn to RVV intrinsics or to vector-predication
intrinsics during loop vectorization, for example. Those codegen paths
ensure that instructions are generated with their own implicit vsetvli,
so the vector length and vtype can be relied upon to be correct.
No corresponding C builtins are planned at this stage, though that is a
possibility for the future if the need arises.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117910
For vmsgeu.vi with 0, we know this is always true. So we can replace
it with vmset.m (unmasked) or vmset.m+vmand.mm (masked).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D116584
Now the backend will select ~0 vl to a register and load instruction, we could use X0 to replace it.
Differential Revision: https://reviews.llvm.org/D116798
When we want to create an splat vector that only the first element is initialized, we could use vmv.s.x or vfmv.s.f to build it.
Differential Revision: https://reviews.llvm.org/D116277
This can be generalized to (srl (and X, C2), C) ->
(srli (slli X, (XLen-C3), (XLen-C3) + C). Where C2 is a mask with
C3 trailing ones.
This can avoid constant materialization for C2. This is beneficial
even when C2 can be selected to ANDI because the SLLI can become
C.SLLI, but C.ANDI cannot cover all the immediates of ANDI.
This also enables CSE in some cases of i8 sdiv by constant codegen.
Similar for (sra (sext_inreg X, i8), C).
With Zbb, sext_inreg of i8 and i16 are legal for sext.b and sext.h.
This transform makes the Zbb codegen the same as without Zbb. The
shifts are more compressible. This also exposes an opportunity for
CSE with another slli in the i16 sdiv by constant codegen.
These 3 switches map LMUL enum to instruction names. These follow
a regular pattern. Use a macro to reduce the number of source code
lines.
Reviewed By: arcbbb
Differential Revision: https://reviews.llvm.org/D116631
For large integers (for example, magic numbers generated by
TargetLowering::BuildSDIV when dividing by constant), we may
need about 4~8 instructions to build them.
In the same time, it just takes two instructions to load
constants (with extra cycles to access memory), so it may be
profitable to put these integers into constant pool.
Reviewed By: asb, craig.topper
Differential Revision: https://reviews.llvm.org/D114950
We already do this for splat nodes that carry a VL, but not for
splats that use VLMAX.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D115483
D113805 improved handling of i32 divu/remu on RV64. The basic idea
from that can be extended to (mul (and X, C2), C1) where C2 is any
mask constant.
We can replace the and with an SLLI by shifting by the number of
leading zeros in C2 if we also shift C1 left by XLen - lzcnt(C1)
bits. This will give the full product XLen additional trailing zeros,
putting the result in the output of MULHU. If we can't use ANDI,
ZEXT.H, or ZEXT.W, this will avoid materializing C2 in a register.
The downside is it make take 1 additional instruction to create C1.
But since that's not on the critical path, it can hopefully be
interleaved with other operations.
The previous tablegen pattern is replaced by custom isel code.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D115310
Add new hasVInstructions() which is currently equivalent.
Replace vector uses of hasStdExtZfh/F/D with new vector specific
versions. The vector spec no longer requires that the vectors implement the
same types as scalar. It only requires that the scalar type is
the maximum size the vectors can support. This is currently
implemented using the scalar rule we were using before.
Add new hasVInstructionsI64() begin using to qualify code that
requires i64 vector elements.
This is all NFC for now, but we can start using this to better
implement D112408 which introduces the Zve extensions.
Reviewed By: frasercrmck, eopXD
Differential Revision: https://reviews.llvm.org/D112496
Use SH1ADD/SH2ADD/SH3ADD along with LUI+ADDI to compose int32*3,
int32*5 and int32*9.
Reviewed By: craig.topper, luismarques
Differential Revision: https://reviews.llvm.org/D111484
Add the tail policy argument to LLVM IR intrinsics. There are two policies for tail elements. Tail agnostic means users do not care about the values in the tail elements and tail undisturbed means the values in the tail elements need to be kept after the operation. In order to let users control the tail policy, we add an additional argument at the end of the argument list.
For unmasked operations, we have no maskedoff and the tail policy is always tail agnostic. If users want to keep tail elements under unmasked operations, they could use all one mask in the masked operations to do it. So, we only add the additional argument for masked operations for most cases. There are exceptions listed below.
In this patch, we do not handle the following cases to reduce the complexity of the patch. There could be two separate patches for them.
* Use dest argument to control tail policy
vmerge.vvm/vmerge.vxm/vmerge.vim (add _t builtins with additional dest argument)
vfmerge.vfm (add _t builtins with additional dest argument)
vmv.v.v (add _t builtins with additional dest argument)
vmv.v.x (add _t builtins with additional dest argument)
vmv.v.i (add _t builtins with additional dest argument)
vfmv.v.f (add _t builtins with additional dest argument)
vadc.vvm/vadc.vxm/vadc.vim (add _t builtins with additional dest argument)
vsbc.vvm/vsbc.vxm (add _t builtins with additional dest argument)
* Always has tail argument for masked/unmasked intrinsics
Vector Single-Width Integer Multiply-Add Instructions (add _t and _mt builtins)
Vector Widening Integer Multiply-Add Instructions (add _t and _mt builtins)
Vector Single-Width Floating-Point Fused Multiply-Add Instructions (add _t and _mt builtins)
Vector Widening Floating-Point Fused Multiply-Add Instructions (add _t and _mt builtins)
Vector Reduction Operations (add _t and _mt builtins)
Vector Slideup Instructions (add _t and _mt builtins)
Vector Slidedown Instructions (add _t and _mt builtins)
Discussion: https://github.com/riscv/rvv-intrinsic-doc/pull/101
Differential Revision: https://reviews.llvm.org/D105092
Turn (and (shl x, c2), c1) -> (slli (srli x, c3-c2), c3) if c1 is a
shifted mask with no leading zeros and c3 trailing zeros where c3
is greater than c2.
Turn (and (shr x, c2), c1) -> (slli (srli x, c2+c3), c3) if c1 is a
shifted mask with c2 leading zeros and c3 trailing zeros.
When the leading zeros is C2+32 we can use SRLIW in place of SRLI.
SimplifyDemandedBits can turn srl into sra if the bits being shifted
in aren't demanded. This patch can recover the original sra in some cases.
I've renamed the tablegen class for detecting W users since the "overflowing operator"
term I originally borrowed from Operator.h does not include srl.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D109162
Soft deprecrate isNullValue/isAllOnesValue and update in tree
callers. This matches the changes to the APInt interface from
D109483.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D109535
If a sext_inreg is up for isel, and all its users are W instructions,
we can skip emitting the sext_inreg. This helpful if the producing
instruction can't become a W instruction.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D108966
X0 has special meaning for vsetvli, we need to make sure we never
create it a vsetvli that uses it by accident. This could happen
if the register coalescer coalesces a copy from X0 into this
instruction.
This patch splits the instruction so that we can have GPRNoX0
register class to use for the cases where we don't want the source
to be X0. The verifier won't let us explicitly use X0 on a GPRNoX0
operand so we need a separate pseudo for those cases.
I don't currently have a failing example for this. There was a
failure in D107957, but the coalescable copy from that example
should have been optimized away much earlier so I've fixed that.
This is not a complete fix. We still need to prevent the same
possible issue on the AVL operand of all of the vector instruction
pseudos. I don't want to make two versions of all of those so we
need to find a different solution for those. I have an idea I'm
going to try.
Differential Revision: https://reviews.llvm.org/D109110
Let the sext_inreg be selected to sext.w. Remove unneeded sext.w
during PostProcessISelDAG.
This gives opportunities for some other isel patterns to match
like the ADDIPair or matching mul with immediate to shXadd.
This becomes possible after D107658 started selecting W instructions
based on users. The sext.w will be considered a W user so isel
will often select a W instruction for the sext.w input and we can
just remove the sext.w. Otherwise we can combine the sext.w with
a ADD/SUB/MUL/SLLI to create a new W instruction in parallel
to the the original instruction.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D107708
DAGCombiner::visitStore can clear the upper bits of constants
used by stores. This leads prevents them from being recognized as
sign extended negative values making them more expensive to
materialize.
This patch uses the hasAllNBitUsers method from D107658 to make
a negative constant if none of the users care about the upper bits.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D108052
We normally select these when the root node is a sext_inreg, but
SimplifyDemandedBits can sometimes bypass the sext_inreg for some
users. This can create situation where sext_inreg+add/sub/mul/shl
is selected to a W instruction, and then the add/sub/mul/shl is
separately selected to a non-W instruction with the same inputs.
This patch tries to detect when it would still be ok to use a W
instruction without the sext_inreg by checking the direct users.
This can allow the W instruction to CSE with one created for a
sext_inreg+add/sub/mul/shl. To minimize complexity and cost of
checking, we make no attempt to determine if the CSE will happen
and just always use a W instruction when we can.
Differential Revision: https://reviews.llvm.org/D107658